| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2ltceilhalf | Structured version Visualization version GIF version | ||
| Description: The ceiling of half of an integer greater than 2 is greater than or equal to 2. (Contributed by AV, 4-Sep-2025.) |
| Ref | Expression |
|---|---|
| 2ltceilhalf | ⊢ (𝑁 ∈ (ℤ≥‘3) → 2 ≤ (⌈‘(𝑁 / 2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzp1 12901 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 = 3 ∨ 𝑁 ∈ (ℤ≥‘(3 + 1)))) | |
| 2 | ex-ceil 30396 | . . . . 5 ⊢ ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1) | |
| 3 | 2re 12322 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 4 | 3 | leidi 11779 | . . . . . . 7 ⊢ 2 ≤ 2 |
| 5 | breq2 5127 | . . . . . . 7 ⊢ ((⌈‘(3 / 2)) = 2 → (2 ≤ (⌈‘(3 / 2)) ↔ 2 ≤ 2)) | |
| 6 | 4, 5 | mpbiri 258 | . . . . . 6 ⊢ ((⌈‘(3 / 2)) = 2 → 2 ≤ (⌈‘(3 / 2))) |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ (((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1) → 2 ≤ (⌈‘(3 / 2))) |
| 8 | 2, 7 | ax-mp 5 | . . . 4 ⊢ 2 ≤ (⌈‘(3 / 2)) |
| 9 | fvoveq1 7436 | . . . 4 ⊢ (𝑁 = 3 → (⌈‘(𝑁 / 2)) = (⌈‘(3 / 2))) | |
| 10 | 8, 9 | breqtrrid 5161 | . . 3 ⊢ (𝑁 = 3 → 2 ≤ (⌈‘(𝑁 / 2))) |
| 11 | 3 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘4) → 2 ∈ ℝ) |
| 12 | eluzelre 12871 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘4) → 𝑁 ∈ ℝ) | |
| 13 | 12 | rehalfcld 12496 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘4) → (𝑁 / 2) ∈ ℝ) |
| 14 | 13 | ceilcld 13865 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘4) → (⌈‘(𝑁 / 2)) ∈ ℤ) |
| 15 | 14 | zred 12705 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘4) → (⌈‘(𝑁 / 2)) ∈ ℝ) |
| 16 | 2t2e4 12412 | . . . . . . 7 ⊢ (2 · 2) = 4 | |
| 17 | eluzle 12873 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘4) → 4 ≤ 𝑁) | |
| 18 | 16, 17 | eqbrtrid 5158 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘4) → (2 · 2) ≤ 𝑁) |
| 19 | 2pos 12351 | . . . . . . . . 9 ⊢ 0 < 2 | |
| 20 | 3, 19 | pm3.2i 470 | . . . . . . . 8 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘4) → (2 ∈ ℝ ∧ 0 < 2)) |
| 22 | lemuldiv 12130 | . . . . . . 7 ⊢ ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 2) ≤ 𝑁 ↔ 2 ≤ (𝑁 / 2))) | |
| 23 | 3, 12, 21, 22 | mp3an2i 1467 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘4) → ((2 · 2) ≤ 𝑁 ↔ 2 ≤ (𝑁 / 2))) |
| 24 | 18, 23 | mpbid 232 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘4) → 2 ≤ (𝑁 / 2)) |
| 25 | 13 | ceilged 13868 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘4) → (𝑁 / 2) ≤ (⌈‘(𝑁 / 2))) |
| 26 | 11, 13, 15, 24, 25 | letrd 11400 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘4) → 2 ≤ (⌈‘(𝑁 / 2))) |
| 27 | 3p1e4 12393 | . . . . 5 ⊢ (3 + 1) = 4 | |
| 28 | 27 | fveq2i 6889 | . . . 4 ⊢ (ℤ≥‘(3 + 1)) = (ℤ≥‘4) |
| 29 | 26, 28 | eleq2s 2851 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘(3 + 1)) → 2 ≤ (⌈‘(𝑁 / 2))) |
| 30 | 10, 29 | jaoi 857 | . 2 ⊢ ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ≥‘(3 + 1))) → 2 ≤ (⌈‘(𝑁 / 2))) |
| 31 | 1, 30 | syl 17 | 1 ⊢ (𝑁 ∈ (ℤ≥‘3) → 2 ≤ (⌈‘(𝑁 / 2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 ℝcr 11136 0cc0 11137 1c1 11138 + caddc 11140 · cmul 11142 < clt 11277 ≤ cle 11278 -cneg 11475 / cdiv 11902 2c2 12303 3c3 12304 4c4 12305 ℤ≥cuz 12860 ⌈cceil 13813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-sup 9464 df-inf 9465 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-n0 12510 df-z 12597 df-uz 12861 df-fl 13814 df-ceil 13815 |
| This theorem is referenced by: gpg3nbgrvtx0ALT 48006 |
| Copyright terms: Public domain | W3C validator |