| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2ltceilhalf | Structured version Visualization version GIF version | ||
| Description: The ceiling of half of an integer greater than 2 is greater than or equal to 2. (Contributed by AV, 4-Sep-2025.) |
| Ref | Expression |
|---|---|
| 2ltceilhalf | ⊢ (𝑁 ∈ (ℤ≥‘3) → 2 ≤ (⌈‘(𝑁 / 2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzp1 12768 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 = 3 ∨ 𝑁 ∈ (ℤ≥‘(3 + 1)))) | |
| 2 | ex-ceil 30420 | . . . . 5 ⊢ ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1) | |
| 3 | 2re 12194 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 4 | 3 | leidi 11646 | . . . . . . 7 ⊢ 2 ≤ 2 |
| 5 | breq2 5090 | . . . . . . 7 ⊢ ((⌈‘(3 / 2)) = 2 → (2 ≤ (⌈‘(3 / 2)) ↔ 2 ≤ 2)) | |
| 6 | 4, 5 | mpbiri 258 | . . . . . 6 ⊢ ((⌈‘(3 / 2)) = 2 → 2 ≤ (⌈‘(3 / 2))) |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ (((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1) → 2 ≤ (⌈‘(3 / 2))) |
| 8 | 2, 7 | ax-mp 5 | . . . 4 ⊢ 2 ≤ (⌈‘(3 / 2)) |
| 9 | fvoveq1 7364 | . . . 4 ⊢ (𝑁 = 3 → (⌈‘(𝑁 / 2)) = (⌈‘(3 / 2))) | |
| 10 | 8, 9 | breqtrrid 5124 | . . 3 ⊢ (𝑁 = 3 → 2 ≤ (⌈‘(𝑁 / 2))) |
| 11 | 3 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘4) → 2 ∈ ℝ) |
| 12 | eluzelre 12738 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘4) → 𝑁 ∈ ℝ) | |
| 13 | 12 | rehalfcld 12363 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘4) → (𝑁 / 2) ∈ ℝ) |
| 14 | 13 | ceilcld 13742 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘4) → (⌈‘(𝑁 / 2)) ∈ ℤ) |
| 15 | 14 | zred 12572 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘4) → (⌈‘(𝑁 / 2)) ∈ ℝ) |
| 16 | 2t2e4 12279 | . . . . . . 7 ⊢ (2 · 2) = 4 | |
| 17 | eluzle 12740 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘4) → 4 ≤ 𝑁) | |
| 18 | 16, 17 | eqbrtrid 5121 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘4) → (2 · 2) ≤ 𝑁) |
| 19 | 2pos 12223 | . . . . . . . . 9 ⊢ 0 < 2 | |
| 20 | 3, 19 | pm3.2i 470 | . . . . . . . 8 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘4) → (2 ∈ ℝ ∧ 0 < 2)) |
| 22 | lemuldiv 11997 | . . . . . . 7 ⊢ ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 2) ≤ 𝑁 ↔ 2 ≤ (𝑁 / 2))) | |
| 23 | 3, 12, 21, 22 | mp3an2i 1468 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘4) → ((2 · 2) ≤ 𝑁 ↔ 2 ≤ (𝑁 / 2))) |
| 24 | 18, 23 | mpbid 232 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘4) → 2 ≤ (𝑁 / 2)) |
| 25 | 13 | ceilged 13745 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘4) → (𝑁 / 2) ≤ (⌈‘(𝑁 / 2))) |
| 26 | 11, 13, 15, 24, 25 | letrd 11265 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘4) → 2 ≤ (⌈‘(𝑁 / 2))) |
| 27 | 3p1e4 12260 | . . . . 5 ⊢ (3 + 1) = 4 | |
| 28 | 27 | fveq2i 6820 | . . . 4 ⊢ (ℤ≥‘(3 + 1)) = (ℤ≥‘4) |
| 29 | 26, 28 | eleq2s 2849 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘(3 + 1)) → 2 ≤ (⌈‘(𝑁 / 2))) |
| 30 | 10, 29 | jaoi 857 | . 2 ⊢ ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ≥‘(3 + 1))) → 2 ≤ (⌈‘(𝑁 / 2))) |
| 31 | 1, 30 | syl 17 | 1 ⊢ (𝑁 ∈ (ℤ≥‘3) → 2 ≤ (⌈‘(𝑁 / 2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 ℝcr 11000 0cc0 11001 1c1 11002 + caddc 11004 · cmul 11006 < clt 11141 ≤ cle 11142 -cneg 11340 / cdiv 11769 2c2 12175 3c3 12176 4c4 12177 ℤ≥cuz 12727 ⌈cceil 13690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-n0 12377 df-z 12464 df-uz 12728 df-fl 13691 df-ceil 13692 |
| This theorem is referenced by: ceilhalfgt1 47360 gpgprismgrusgra 48089 gpg3nbgrvtx0ALT 48108 gpg5edgnedg 48161 |
| Copyright terms: Public domain | W3C validator |