| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2ltceilhalf | Structured version Visualization version GIF version | ||
| Description: The ceiling of half of an integer greater than 2 is greater than or equal to 2. (Contributed by AV, 4-Sep-2025.) |
| Ref | Expression |
|---|---|
| 2ltceilhalf | ⊢ (𝑁 ∈ (ℤ≥‘3) → 2 ≤ (⌈‘(𝑁 / 2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzp1 12795 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 = 3 ∨ 𝑁 ∈ (ℤ≥‘(3 + 1)))) | |
| 2 | ex-ceil 30411 | . . . . 5 ⊢ ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1) | |
| 3 | 2re 12221 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 4 | 3 | leidi 11673 | . . . . . . 7 ⊢ 2 ≤ 2 |
| 5 | breq2 5099 | . . . . . . 7 ⊢ ((⌈‘(3 / 2)) = 2 → (2 ≤ (⌈‘(3 / 2)) ↔ 2 ≤ 2)) | |
| 6 | 4, 5 | mpbiri 258 | . . . . . 6 ⊢ ((⌈‘(3 / 2)) = 2 → 2 ≤ (⌈‘(3 / 2))) |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ (((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1) → 2 ≤ (⌈‘(3 / 2))) |
| 8 | 2, 7 | ax-mp 5 | . . . 4 ⊢ 2 ≤ (⌈‘(3 / 2)) |
| 9 | fvoveq1 7376 | . . . 4 ⊢ (𝑁 = 3 → (⌈‘(𝑁 / 2)) = (⌈‘(3 / 2))) | |
| 10 | 8, 9 | breqtrrid 5133 | . . 3 ⊢ (𝑁 = 3 → 2 ≤ (⌈‘(𝑁 / 2))) |
| 11 | 3 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘4) → 2 ∈ ℝ) |
| 12 | eluzelre 12765 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘4) → 𝑁 ∈ ℝ) | |
| 13 | 12 | rehalfcld 12390 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘4) → (𝑁 / 2) ∈ ℝ) |
| 14 | 13 | ceilcld 13766 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘4) → (⌈‘(𝑁 / 2)) ∈ ℤ) |
| 15 | 14 | zred 12599 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘4) → (⌈‘(𝑁 / 2)) ∈ ℝ) |
| 16 | 2t2e4 12306 | . . . . . . 7 ⊢ (2 · 2) = 4 | |
| 17 | eluzle 12767 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘4) → 4 ≤ 𝑁) | |
| 18 | 16, 17 | eqbrtrid 5130 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘4) → (2 · 2) ≤ 𝑁) |
| 19 | 2pos 12250 | . . . . . . . . 9 ⊢ 0 < 2 | |
| 20 | 3, 19 | pm3.2i 470 | . . . . . . . 8 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘4) → (2 ∈ ℝ ∧ 0 < 2)) |
| 22 | lemuldiv 12024 | . . . . . . 7 ⊢ ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 2) ≤ 𝑁 ↔ 2 ≤ (𝑁 / 2))) | |
| 23 | 3, 12, 21, 22 | mp3an2i 1468 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘4) → ((2 · 2) ≤ 𝑁 ↔ 2 ≤ (𝑁 / 2))) |
| 24 | 18, 23 | mpbid 232 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘4) → 2 ≤ (𝑁 / 2)) |
| 25 | 13 | ceilged 13769 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘4) → (𝑁 / 2) ≤ (⌈‘(𝑁 / 2))) |
| 26 | 11, 13, 15, 24, 25 | letrd 11292 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘4) → 2 ≤ (⌈‘(𝑁 / 2))) |
| 27 | 3p1e4 12287 | . . . . 5 ⊢ (3 + 1) = 4 | |
| 28 | 27 | fveq2i 6829 | . . . 4 ⊢ (ℤ≥‘(3 + 1)) = (ℤ≥‘4) |
| 29 | 26, 28 | eleq2s 2846 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘(3 + 1)) → 2 ≤ (⌈‘(𝑁 / 2))) |
| 30 | 10, 29 | jaoi 857 | . 2 ⊢ ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ≥‘(3 + 1))) → 2 ≤ (⌈‘(𝑁 / 2))) |
| 31 | 1, 30 | syl 17 | 1 ⊢ (𝑁 ∈ (ℤ≥‘3) → 2 ≤ (⌈‘(𝑁 / 2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 < clt 11168 ≤ cle 11169 -cneg 11367 / cdiv 11796 2c2 12202 3c3 12203 4c4 12204 ℤ≥cuz 12754 ⌈cceil 13714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-n0 12404 df-z 12491 df-uz 12755 df-fl 13715 df-ceil 13716 |
| This theorem is referenced by: ceilhalfgt1 47333 gpgprismgrusgra 48062 gpg3nbgrvtx0ALT 48081 gpg5edgnedg 48134 |
| Copyright terms: Public domain | W3C validator |