![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2ltceilhalf | Structured version Visualization version GIF version |
Description: The ceiling of half of an integer greater than 2 is greater than or equal to 2. (Contributed by AV, 4-Sep-2025.) |
Ref | Expression |
---|---|
2ltceilhalf | ⊢ (𝑁 ∈ (ℤ≥‘3) → 2 ≤ (⌈‘(𝑁 / 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzp1 12951 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 = 3 ∨ 𝑁 ∈ (ℤ≥‘(3 + 1)))) | |
2 | ex-ceil 30500 | . . . . 5 ⊢ ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1) | |
3 | 2re 12372 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
4 | 3 | leidi 11829 | . . . . . . 7 ⊢ 2 ≤ 2 |
5 | breq2 5171 | . . . . . . 7 ⊢ ((⌈‘(3 / 2)) = 2 → (2 ≤ (⌈‘(3 / 2)) ↔ 2 ≤ 2)) | |
6 | 4, 5 | mpbiri 258 | . . . . . 6 ⊢ ((⌈‘(3 / 2)) = 2 → 2 ≤ (⌈‘(3 / 2))) |
7 | 6 | adantr 480 | . . . . 5 ⊢ (((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1) → 2 ≤ (⌈‘(3 / 2))) |
8 | 2, 7 | ax-mp 5 | . . . 4 ⊢ 2 ≤ (⌈‘(3 / 2)) |
9 | fvoveq1 7474 | . . . 4 ⊢ (𝑁 = 3 → (⌈‘(𝑁 / 2)) = (⌈‘(3 / 2))) | |
10 | 8, 9 | breqtrrid 5205 | . . 3 ⊢ (𝑁 = 3 → 2 ≤ (⌈‘(𝑁 / 2))) |
11 | 3 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘4) → 2 ∈ ℝ) |
12 | eluzelre 12921 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘4) → 𝑁 ∈ ℝ) | |
13 | 12 | rehalfcld 12545 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘4) → (𝑁 / 2) ∈ ℝ) |
14 | 13 | ceilcld 13910 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘4) → (⌈‘(𝑁 / 2)) ∈ ℤ) |
15 | 14 | zred 12754 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘4) → (⌈‘(𝑁 / 2)) ∈ ℝ) |
16 | 2t2e4 12462 | . . . . . . 7 ⊢ (2 · 2) = 4 | |
17 | eluzle 12923 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘4) → 4 ≤ 𝑁) | |
18 | 16, 17 | eqbrtrid 5202 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘4) → (2 · 2) ≤ 𝑁) |
19 | 2pos 12401 | . . . . . . . . 9 ⊢ 0 < 2 | |
20 | 3, 19 | pm3.2i 470 | . . . . . . . 8 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘4) → (2 ∈ ℝ ∧ 0 < 2)) |
22 | lemuldiv 12180 | . . . . . . 7 ⊢ ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 2) ≤ 𝑁 ↔ 2 ≤ (𝑁 / 2))) | |
23 | 3, 12, 21, 22 | mp3an2i 1466 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘4) → ((2 · 2) ≤ 𝑁 ↔ 2 ≤ (𝑁 / 2))) |
24 | 18, 23 | mpbid 232 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘4) → 2 ≤ (𝑁 / 2)) |
25 | 13 | ceilged 13913 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘4) → (𝑁 / 2) ≤ (⌈‘(𝑁 / 2))) |
26 | 11, 13, 15, 24, 25 | letrd 11450 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘4) → 2 ≤ (⌈‘(𝑁 / 2))) |
27 | 3p1e4 12443 | . . . . 5 ⊢ (3 + 1) = 4 | |
28 | 27 | fveq2i 6926 | . . . 4 ⊢ (ℤ≥‘(3 + 1)) = (ℤ≥‘4) |
29 | 26, 28 | eleq2s 2862 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘(3 + 1)) → 2 ≤ (⌈‘(𝑁 / 2))) |
30 | 10, 29 | jaoi 856 | . 2 ⊢ ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ≥‘(3 + 1))) → 2 ≤ (⌈‘(𝑁 / 2))) |
31 | 1, 30 | syl 17 | 1 ⊢ (𝑁 ∈ (ℤ≥‘3) → 2 ≤ (⌈‘(𝑁 / 2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 class class class wbr 5167 ‘cfv 6576 (class class class)co 7451 ℝcr 11186 0cc0 11187 1c1 11188 + caddc 11190 · cmul 11192 < clt 11327 ≤ cle 11328 -cneg 11525 / cdiv 11952 2c2 12353 3c3 12354 4c4 12355 ℤ≥cuz 12910 ⌈cceil 13858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5318 ax-nul 5325 ax-pow 5384 ax-pr 5448 ax-un 7773 ax-cnex 11243 ax-resscn 11244 ax-1cn 11245 ax-icn 11246 ax-addcl 11247 ax-addrcl 11248 ax-mulcl 11249 ax-mulrcl 11250 ax-mulcom 11251 ax-addass 11252 ax-mulass 11253 ax-distr 11254 ax-i2m1 11255 ax-1ne0 11256 ax-1rid 11257 ax-rnegex 11258 ax-rrecex 11259 ax-cnre 11260 ax-pre-lttri 11261 ax-pre-lttrn 11262 ax-pre-ltadd 11263 ax-pre-mulgt0 11264 ax-pre-sup 11265 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4933 df-iun 5018 df-br 5168 df-opab 5230 df-mpt 5251 df-tr 5285 df-id 5594 df-eprel 5600 df-po 5608 df-so 5609 df-fr 5653 df-we 5655 df-xp 5707 df-rel 5708 df-cnv 5709 df-co 5710 df-dm 5711 df-rn 5712 df-res 5713 df-ima 5714 df-pred 6335 df-ord 6401 df-on 6402 df-lim 6403 df-suc 6404 df-iota 6528 df-fun 6578 df-fn 6579 df-f 6580 df-f1 6581 df-fo 6582 df-f1o 6583 df-fv 6584 df-riota 7407 df-ov 7454 df-oprab 7455 df-mpo 7456 df-om 7907 df-2nd 8034 df-frecs 8325 df-wrecs 8356 df-recs 8430 df-rdg 8469 df-er 8766 df-en 9007 df-dom 9008 df-sdom 9009 df-sup 9514 df-inf 9515 df-pnf 11329 df-mnf 11330 df-xr 11331 df-ltxr 11332 df-le 11333 df-sub 11526 df-neg 11527 df-div 11953 df-nn 12299 df-2 12361 df-3 12362 df-4 12363 df-n0 12559 df-z 12646 df-uz 12911 df-fl 13859 df-ceil 13860 |
This theorem is referenced by: gpg3nbgrvtx0ALT 47920 |
Copyright terms: Public domain | W3C validator |