![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2ltceilhalf | Structured version Visualization version GIF version |
Description: The ceiling of half of an integer greater than 2 is greater than or equal to 2. (Contributed by AV, 4-Sep-2025.) |
Ref | Expression |
---|---|
2ltceilhalf | ⊢ (𝑁 ∈ (ℤ≥‘3) → 2 ≤ (⌈‘(𝑁 / 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzp1 12915 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 = 3 ∨ 𝑁 ∈ (ℤ≥‘(3 + 1)))) | |
2 | ex-ceil 30457 | . . . . 5 ⊢ ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1) | |
3 | 2re 12336 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
4 | 3 | leidi 11793 | . . . . . . 7 ⊢ 2 ≤ 2 |
5 | breq2 5145 | . . . . . . 7 ⊢ ((⌈‘(3 / 2)) = 2 → (2 ≤ (⌈‘(3 / 2)) ↔ 2 ≤ 2)) | |
6 | 4, 5 | mpbiri 258 | . . . . . 6 ⊢ ((⌈‘(3 / 2)) = 2 → 2 ≤ (⌈‘(3 / 2))) |
7 | 6 | adantr 480 | . . . . 5 ⊢ (((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1) → 2 ≤ (⌈‘(3 / 2))) |
8 | 2, 7 | ax-mp 5 | . . . 4 ⊢ 2 ≤ (⌈‘(3 / 2)) |
9 | fvoveq1 7452 | . . . 4 ⊢ (𝑁 = 3 → (⌈‘(𝑁 / 2)) = (⌈‘(3 / 2))) | |
10 | 8, 9 | breqtrrid 5179 | . . 3 ⊢ (𝑁 = 3 → 2 ≤ (⌈‘(𝑁 / 2))) |
11 | 3 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘4) → 2 ∈ ℝ) |
12 | eluzelre 12885 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘4) → 𝑁 ∈ ℝ) | |
13 | 12 | rehalfcld 12509 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘4) → (𝑁 / 2) ∈ ℝ) |
14 | 13 | ceilcld 13879 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘4) → (⌈‘(𝑁 / 2)) ∈ ℤ) |
15 | 14 | zred 12718 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘4) → (⌈‘(𝑁 / 2)) ∈ ℝ) |
16 | 2t2e4 12426 | . . . . . . 7 ⊢ (2 · 2) = 4 | |
17 | eluzle 12887 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘4) → 4 ≤ 𝑁) | |
18 | 16, 17 | eqbrtrid 5176 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘4) → (2 · 2) ≤ 𝑁) |
19 | 2pos 12365 | . . . . . . . . 9 ⊢ 0 < 2 | |
20 | 3, 19 | pm3.2i 470 | . . . . . . . 8 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘4) → (2 ∈ ℝ ∧ 0 < 2)) |
22 | lemuldiv 12144 | . . . . . . 7 ⊢ ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 2) ≤ 𝑁 ↔ 2 ≤ (𝑁 / 2))) | |
23 | 3, 12, 21, 22 | mp3an2i 1468 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘4) → ((2 · 2) ≤ 𝑁 ↔ 2 ≤ (𝑁 / 2))) |
24 | 18, 23 | mpbid 232 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘4) → 2 ≤ (𝑁 / 2)) |
25 | 13 | ceilged 13882 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘4) → (𝑁 / 2) ≤ (⌈‘(𝑁 / 2))) |
26 | 11, 13, 15, 24, 25 | letrd 11414 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘4) → 2 ≤ (⌈‘(𝑁 / 2))) |
27 | 3p1e4 12407 | . . . . 5 ⊢ (3 + 1) = 4 | |
28 | 27 | fveq2i 6907 | . . . 4 ⊢ (ℤ≥‘(3 + 1)) = (ℤ≥‘4) |
29 | 26, 28 | eleq2s 2858 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘(3 + 1)) → 2 ≤ (⌈‘(𝑁 / 2))) |
30 | 10, 29 | jaoi 858 | . 2 ⊢ ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ≥‘(3 + 1))) → 2 ≤ (⌈‘(𝑁 / 2))) |
31 | 1, 30 | syl 17 | 1 ⊢ (𝑁 ∈ (ℤ≥‘3) → 2 ≤ (⌈‘(𝑁 / 2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 class class class wbr 5141 ‘cfv 6559 (class class class)co 7429 ℝcr 11150 0cc0 11151 1c1 11152 + caddc 11154 · cmul 11156 < clt 11291 ≤ cle 11292 -cneg 11489 / cdiv 11916 2c2 12317 3c3 12318 4c4 12319 ℤ≥cuz 12874 ⌈cceil 13827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 ax-pre-sup 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-2nd 8011 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-er 8741 df-en 8982 df-dom 8983 df-sdom 8984 df-sup 9478 df-inf 9479 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-div 11917 df-nn 12263 df-2 12325 df-3 12326 df-4 12327 df-n0 12523 df-z 12610 df-uz 12875 df-fl 13828 df-ceil 13829 |
This theorem is referenced by: gpg3nbgrvtx0ALT 48006 |
Copyright terms: Public domain | W3C validator |