Proof of Theorem gpg3nbgrvtx0ALT
| Step | Hyp | Ref
| Expression |
| 1 | | gpgnbgr.j |
. . . 4
⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| 2 | | gpgnbgr.g |
. . . 4
⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
| 3 | | gpgnbgr.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
| 4 | | gpgnbgr.u |
. . . 4
⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
| 5 | 1, 2, 3, 4 | gpgnbgrvtx0 48003 |
. . 3
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 𝑈 = {〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈1, (2nd
‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}) |
| 6 | 5 | fveq2d 6908 |
. 2
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) →
(♯‘𝑈) =
(♯‘{〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈1, (2nd
‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉})) |
| 7 | | 0ne1 12333 |
. . . . . . 7
⊢ 0 ≠
1 |
| 8 | 7 | a1i 11 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 0 ≠
1) |
| 9 | 8 | orcd 874 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (0 ≠ 1 ∨
(((2nd ‘𝑋)
+ 1) mod 𝑁) ≠
(2nd ‘𝑋))) |
| 10 | | c0ex 11251 |
. . . . . 6
⊢ 0 ∈
V |
| 11 | | ovex 7462 |
. . . . . 6
⊢
(((2nd ‘𝑋) + 1) mod 𝑁) ∈ V |
| 12 | 10, 11 | opthne 5485 |
. . . . 5
⊢ (〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉 ≠
〈1, (2nd ‘𝑋)〉 ↔ (0 ≠ 1 ∨
(((2nd ‘𝑋)
+ 1) mod 𝑁) ≠
(2nd ‘𝑋))) |
| 13 | 9, 12 | sylibr 234 |
. . . 4
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉 ≠
〈1, (2nd ‘𝑋)〉) |
| 14 | | ax-1ne0 11220 |
. . . . . . 7
⊢ 1 ≠
0 |
| 15 | 14 | a1i 11 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 1 ≠
0) |
| 16 | 15 | orcd 874 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (1 ≠ 0 ∨
(2nd ‘𝑋)
≠ (((2nd ‘𝑋) − 1) mod 𝑁))) |
| 17 | | 1ex 11253 |
. . . . . 6
⊢ 1 ∈
V |
| 18 | | fvex 6917 |
. . . . . 6
⊢
(2nd ‘𝑋) ∈ V |
| 19 | 17, 18 | opthne 5485 |
. . . . 5
⊢ (〈1,
(2nd ‘𝑋)〉 ≠ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 ↔ (1 ≠ 0
∨ (2nd ‘𝑋) ≠ (((2nd ‘𝑋) − 1) mod 𝑁))) |
| 20 | 16, 19 | sylibr 234 |
. . . 4
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 〈1,
(2nd ‘𝑋)〉 ≠ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉) |
| 21 | | simpll 767 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 𝑁 ∈
(ℤ≥‘3)) |
| 22 | | 2z 12645 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℤ |
| 23 | 22 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘3) → 2 ∈ ℤ) |
| 24 | | eluzelre 12885 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℝ) |
| 25 | 24 | rehalfcld 12509 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘3) → (𝑁 / 2) ∈ ℝ) |
| 26 | 25 | ceilcld 13879 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘3) → (⌈‘(𝑁 / 2)) ∈ ℤ) |
| 27 | | 2ltceilhalf 47988 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘3) → 2 ≤ (⌈‘(𝑁 / 2))) |
| 28 | | eluz2 12880 |
. . . . . . . . . . . 12
⊢
((⌈‘(𝑁 /
2)) ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧
(⌈‘(𝑁 / 2))
∈ ℤ ∧ 2 ≤ (⌈‘(𝑁 / 2)))) |
| 29 | 23, 26, 27, 28 | syl3anbrc 1344 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘3) → (⌈‘(𝑁 / 2)) ∈
(ℤ≥‘2)) |
| 30 | 29 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (⌈‘(𝑁 / 2)) ∈
(ℤ≥‘2)) |
| 31 | 30 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) →
(⌈‘(𝑁 / 2))
∈ (ℤ≥‘2)) |
| 32 | | fzo1lb 13749 |
. . . . . . . . 9
⊢ (1 ∈
(1..^(⌈‘(𝑁 /
2))) ↔ (⌈‘(𝑁 / 2)) ∈
(ℤ≥‘2)) |
| 33 | 31, 32 | sylibr 234 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 1 ∈
(1..^(⌈‘(𝑁 /
2)))) |
| 34 | | eqid 2736 |
. . . . . . . . . 10
⊢
(0..^𝑁) = (0..^𝑁) |
| 35 | 34, 1, 2, 3 | gpgvtxel2 47979 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (2nd ‘𝑋) ∈ (0..^𝑁)) |
| 36 | 35 | adantrr 717 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (2nd
‘𝑋) ∈ (0..^𝑁)) |
| 37 | | gpg3nbgrvtxlem 47996 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 1 ∈ (1..^(⌈‘(𝑁 / 2))) ∧ (2nd
‘𝑋) ∈ (0..^𝑁)) → (((2nd
‘𝑋) + 1) mod 𝑁) ≠ (((2nd
‘𝑋) − 1) mod
𝑁)) |
| 38 | 21, 33, 36, 37 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (((2nd
‘𝑋) + 1) mod 𝑁) ≠ (((2nd
‘𝑋) − 1) mod
𝑁)) |
| 39 | 38 | necomd 2995 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (((2nd
‘𝑋) − 1) mod
𝑁) ≠ (((2nd
‘𝑋) + 1) mod 𝑁)) |
| 40 | 39 | olcd 875 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (0 ≠ 0 ∨
(((2nd ‘𝑋)
− 1) mod 𝑁) ≠
(((2nd ‘𝑋)
+ 1) mod 𝑁))) |
| 41 | | ovex 7462 |
. . . . . 6
⊢
(((2nd ‘𝑋) − 1) mod 𝑁) ∈ V |
| 42 | 10, 41 | opthne 5485 |
. . . . 5
⊢ (〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉
≠ 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉 ↔ (0 ≠ 0 ∨
(((2nd ‘𝑋)
− 1) mod 𝑁) ≠
(((2nd ‘𝑋)
+ 1) mod 𝑁))) |
| 43 | 40, 42 | sylibr 234 |
. . . 4
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉
≠ 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉) |
| 44 | 13, 20, 43 | 3jca 1129 |
. . 3
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉 ≠
〈1, (2nd ‘𝑋)〉 ∧ 〈1, (2nd
‘𝑋)〉 ≠
〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉 ∧ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 ≠ 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉)) |
| 45 | | opex 5467 |
. . . 4
⊢ 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉 ∈
V |
| 46 | | opex 5467 |
. . . 4
⊢ 〈1,
(2nd ‘𝑋)〉 ∈ V |
| 47 | | opex 5467 |
. . . 4
⊢ 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉
∈ V |
| 48 | | hashtpg 14520 |
. . . 4
⊢
((〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉 ∈ V ∧ 〈1,
(2nd ‘𝑋)〉 ∈ V ∧ 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉
∈ V) → ((〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉 ≠ 〈1, (2nd
‘𝑋)〉 ∧
〈1, (2nd ‘𝑋)〉 ≠ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 ∧ 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉
≠ 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉) ↔ (♯‘{〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉}) =
3)) |
| 49 | 45, 46, 47, 48 | mp3an 1463 |
. . 3
⊢
((〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉 ≠ 〈1, (2nd
‘𝑋)〉 ∧
〈1, (2nd ‘𝑋)〉 ≠ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 ∧ 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉
≠ 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉) ↔ (♯‘{〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉}) =
3) |
| 50 | 44, 49 | sylib 218 |
. 2
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) →
(♯‘{〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈1, (2nd
‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}) =
3) |
| 51 | 6, 50 | eqtrd 2776 |
1
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) →
(♯‘𝑈) =
3) |