Proof of Theorem gpg3nbgrvtx0ALT
Step | Hyp | Ref
| Expression |
1 | | gpgnbgr.j |
. . . 4
⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
2 | | gpgnbgr.g |
. . . 4
⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
3 | | gpgnbgr.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
4 | | gpgnbgr.u |
. . . 4
⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
5 | 1, 2, 3, 4 | gpgnbgrvtx0 47917 |
. . 3
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 𝑈 = {〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈1, (2nd
‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}) |
6 | 5 | fveq2d 6927 |
. 2
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) →
(♯‘𝑈) =
(♯‘{〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈1, (2nd
‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉})) |
7 | | 0ne1 12369 |
. . . . . . 7
⊢ 0 ≠
1 |
8 | 7 | a1i 11 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 0 ≠
1) |
9 | 8 | orcd 872 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (0 ≠ 1 ∨
(((2nd ‘𝑋)
+ 1) mod 𝑁) ≠
(2nd ‘𝑋))) |
10 | | c0ex 11287 |
. . . . . 6
⊢ 0 ∈
V |
11 | | ovex 7484 |
. . . . . 6
⊢
(((2nd ‘𝑋) + 1) mod 𝑁) ∈ V |
12 | 10, 11 | opthne 5503 |
. . . . 5
⊢ (〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉 ≠
〈1, (2nd ‘𝑋)〉 ↔ (0 ≠ 1 ∨
(((2nd ‘𝑋)
+ 1) mod 𝑁) ≠
(2nd ‘𝑋))) |
13 | 9, 12 | sylibr 234 |
. . . 4
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉 ≠
〈1, (2nd ‘𝑋)〉) |
14 | | ax-1ne0 11256 |
. . . . . . 7
⊢ 1 ≠
0 |
15 | 14 | a1i 11 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 1 ≠
0) |
16 | 15 | orcd 872 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (1 ≠ 0 ∨
(2nd ‘𝑋)
≠ (((2nd ‘𝑋) − 1) mod 𝑁))) |
17 | | 1ex 11289 |
. . . . . 6
⊢ 1 ∈
V |
18 | | fvex 6936 |
. . . . . 6
⊢
(2nd ‘𝑋) ∈ V |
19 | 17, 18 | opthne 5503 |
. . . . 5
⊢ (〈1,
(2nd ‘𝑋)〉 ≠ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 ↔ (1 ≠ 0
∨ (2nd ‘𝑋) ≠ (((2nd ‘𝑋) − 1) mod 𝑁))) |
20 | 16, 19 | sylibr 234 |
. . . 4
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 〈1,
(2nd ‘𝑋)〉 ≠ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉) |
21 | | simpll 766 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 𝑁 ∈
(ℤ≥‘3)) |
22 | | 2z 12681 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℤ |
23 | 22 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘3) → 2 ∈ ℤ) |
24 | | eluzelre 12921 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℝ) |
25 | 24 | rehalfcld 12545 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘3) → (𝑁 / 2) ∈ ℝ) |
26 | 25 | ceilcld 13910 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘3) → (⌈‘(𝑁 / 2)) ∈ ℤ) |
27 | | 2ltceilhalf 47902 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘3) → 2 ≤ (⌈‘(𝑁 / 2))) |
28 | | eluz2 12916 |
. . . . . . . . . . . 12
⊢
((⌈‘(𝑁 /
2)) ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧
(⌈‘(𝑁 / 2))
∈ ℤ ∧ 2 ≤ (⌈‘(𝑁 / 2)))) |
29 | 23, 26, 27, 28 | syl3anbrc 1343 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘3) → (⌈‘(𝑁 / 2)) ∈
(ℤ≥‘2)) |
30 | 29 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (⌈‘(𝑁 / 2)) ∈
(ℤ≥‘2)) |
31 | 30 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) →
(⌈‘(𝑁 / 2))
∈ (ℤ≥‘2)) |
32 | | fzo1lb 13781 |
. . . . . . . . 9
⊢ (1 ∈
(1..^(⌈‘(𝑁 /
2))) ↔ (⌈‘(𝑁 / 2)) ∈
(ℤ≥‘2)) |
33 | 31, 32 | sylibr 234 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 1 ∈
(1..^(⌈‘(𝑁 /
2)))) |
34 | | eqid 2740 |
. . . . . . . . . 10
⊢
(0..^𝑁) = (0..^𝑁) |
35 | 34, 1, 2, 3 | gpgvtxel2 47896 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (2nd ‘𝑋) ∈ (0..^𝑁)) |
36 | 35 | adantrr 716 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (2nd
‘𝑋) ∈ (0..^𝑁)) |
37 | | gpg3nbgrvtxlem 47910 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 1 ∈ (1..^(⌈‘(𝑁 / 2))) ∧ (2nd
‘𝑋) ∈ (0..^𝑁)) → (((2nd
‘𝑋) + 1) mod 𝑁) ≠ (((2nd
‘𝑋) − 1) mod
𝑁)) |
38 | 21, 33, 36, 37 | syl3anc 1371 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (((2nd
‘𝑋) + 1) mod 𝑁) ≠ (((2nd
‘𝑋) − 1) mod
𝑁)) |
39 | 38 | necomd 3002 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (((2nd
‘𝑋) − 1) mod
𝑁) ≠ (((2nd
‘𝑋) + 1) mod 𝑁)) |
40 | 39 | olcd 873 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (0 ≠ 0 ∨
(((2nd ‘𝑋)
− 1) mod 𝑁) ≠
(((2nd ‘𝑋)
+ 1) mod 𝑁))) |
41 | | ovex 7484 |
. . . . . 6
⊢
(((2nd ‘𝑋) − 1) mod 𝑁) ∈ V |
42 | 10, 41 | opthne 5503 |
. . . . 5
⊢ (〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉
≠ 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉 ↔ (0 ≠ 0 ∨
(((2nd ‘𝑋)
− 1) mod 𝑁) ≠
(((2nd ‘𝑋)
+ 1) mod 𝑁))) |
43 | 40, 42 | sylibr 234 |
. . . 4
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉
≠ 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉) |
44 | 13, 20, 43 | 3jca 1128 |
. . 3
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉 ≠
〈1, (2nd ‘𝑋)〉 ∧ 〈1, (2nd
‘𝑋)〉 ≠
〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉 ∧ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 ≠ 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉)) |
45 | | opex 5485 |
. . . 4
⊢ 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉 ∈
V |
46 | | opex 5485 |
. . . 4
⊢ 〈1,
(2nd ‘𝑋)〉 ∈ V |
47 | | opex 5485 |
. . . 4
⊢ 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉
∈ V |
48 | | hashtpg 14551 |
. . . 4
⊢
((〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉 ∈ V ∧ 〈1,
(2nd ‘𝑋)〉 ∈ V ∧ 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉
∈ V) → ((〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉 ≠ 〈1, (2nd
‘𝑋)〉 ∧
〈1, (2nd ‘𝑋)〉 ≠ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 ∧ 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉
≠ 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉) ↔ (♯‘{〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉}) =
3)) |
49 | 45, 46, 47, 48 | mp3an 1461 |
. . 3
⊢
((〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉 ≠ 〈1, (2nd
‘𝑋)〉 ∧
〈1, (2nd ‘𝑋)〉 ≠ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 ∧ 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉
≠ 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉) ↔ (♯‘{〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉}) =
3) |
50 | 44, 49 | sylib 218 |
. 2
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) →
(♯‘{〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈1, (2nd
‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}) =
3) |
51 | 6, 50 | eqtrd 2780 |
1
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) →
(♯‘𝑈) =
3) |