Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg3nbgrvtx0ALT Structured version   Visualization version   GIF version

Theorem gpg3nbgrvtx0ALT 48239
Description: In a generalized Petersen graph 𝐺, every outside vertex has exactly three (different) neighbors. (Contributed by AV, 30-Aug-2025.)

The proof of gpg3nbgrvtx0 48238 can be shortened using modmknepk 47524, but then theorem 2ltceilhalf 47490 is required which is based on an "example" ex-ceil 30449. If these theorems were moved to main, the "example" should also be moved up to become a full-fledged theorem. (Proof shortened by AV, 4-Sep-2025.) (Proof modification is discouraged.) (New usage is discouraged.)

Hypotheses
Ref Expression
gpgnbgr.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgnbgr.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgnbgr.v 𝑉 = (Vtx‘𝐺)
gpgnbgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
Assertion
Ref Expression
gpg3nbgrvtx0ALT (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (♯‘𝑈) = 3)

Proof of Theorem gpg3nbgrvtx0ALT
StepHypRef Expression
1 gpgnbgr.j . . . 4 𝐽 = (1..^(⌈‘(𝑁 / 2)))
2 gpgnbgr.g . . . 4 𝐺 = (𝑁 gPetersenGr 𝐾)
3 gpgnbgr.v . . . 4 𝑉 = (Vtx‘𝐺)
4 gpgnbgr.u . . . 4 𝑈 = (𝐺 NeighbVtx 𝑋)
51, 2, 3, 4gpgnbgrvtx0 48236 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑈 = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})
65fveq2d 6835 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (♯‘𝑈) = (♯‘{⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}))
7 0ne1 12207 . . . . . . 7 0 ≠ 1
87a1i 11 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 0 ≠ 1)
98orcd 873 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (0 ≠ 1 ∨ (((2nd𝑋) + 1) mod 𝑁) ≠ (2nd𝑋)))
10 c0ex 11117 . . . . . 6 0 ∈ V
11 ovex 7388 . . . . . 6 (((2nd𝑋) + 1) mod 𝑁) ∈ V
1210, 11opthne 5427 . . . . 5 (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨1, (2nd𝑋)⟩ ↔ (0 ≠ 1 ∨ (((2nd𝑋) + 1) mod 𝑁) ≠ (2nd𝑋)))
139, 12sylibr 234 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨1, (2nd𝑋)⟩)
14 ax-1ne0 11086 . . . . . . 7 1 ≠ 0
1514a1i 11 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 1 ≠ 0)
1615orcd 873 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (1 ≠ 0 ∨ (2nd𝑋) ≠ (((2nd𝑋) − 1) mod 𝑁)))
17 1ex 11119 . . . . . 6 1 ∈ V
18 fvex 6844 . . . . . 6 (2nd𝑋) ∈ V
1917, 18opthne 5427 . . . . 5 (⟨1, (2nd𝑋)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ↔ (1 ≠ 0 ∨ (2nd𝑋) ≠ (((2nd𝑋) − 1) mod 𝑁)))
2016, 19sylibr 234 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ⟨1, (2nd𝑋)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)
21 simpll 766 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑁 ∈ (ℤ‘3))
22 eqid 2733 . . . . . . . . 9 (0..^𝑁) = (0..^𝑁)
2322, 1, 2, 3gpgvtxel2 48210 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (2nd𝑋) ∈ (0..^𝑁))
2423adantrr 717 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (2nd𝑋) ∈ (0..^𝑁))
25 2z 12514 . . . . . . . . . . 11 2 ∈ ℤ
2625a1i 11 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℤ)
27 eluzelre 12753 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℝ)
2827rehalfcld 12379 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → (𝑁 / 2) ∈ ℝ)
2928ceilcld 13754 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → (⌈‘(𝑁 / 2)) ∈ ℤ)
30 2ltceilhalf 47490 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → 2 ≤ (⌈‘(𝑁 / 2)))
31 eluz2 12748 . . . . . . . . . 10 ((⌈‘(𝑁 / 2)) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (⌈‘(𝑁 / 2)) ∈ ℤ ∧ 2 ≤ (⌈‘(𝑁 / 2))))
3226, 29, 30, 31syl3anbrc 1344 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → (⌈‘(𝑁 / 2)) ∈ (ℤ‘2))
33 fzo1lb 13620 . . . . . . . . 9 (1 ∈ (1..^(⌈‘(𝑁 / 2))) ↔ (⌈‘(𝑁 / 2)) ∈ (ℤ‘2))
3432, 33sylibr 234 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 1 ∈ (1..^(⌈‘(𝑁 / 2))))
3534ad2antrr 726 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 1 ∈ (1..^(⌈‘(𝑁 / 2))))
36 eqid 2733 . . . . . . . 8 (1..^(⌈‘(𝑁 / 2))) = (1..^(⌈‘(𝑁 / 2)))
3736, 22modmknepk 47524 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (2nd𝑋) ∈ (0..^𝑁) ∧ 1 ∈ (1..^(⌈‘(𝑁 / 2)))) → (((2nd𝑋) − 1) mod 𝑁) ≠ (((2nd𝑋) + 1) mod 𝑁))
3821, 24, 35, 37syl3anc 1373 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) − 1) mod 𝑁) ≠ (((2nd𝑋) + 1) mod 𝑁))
3938olcd 874 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (0 ≠ 0 ∨ (((2nd𝑋) − 1) mod 𝑁) ≠ (((2nd𝑋) + 1) mod 𝑁)))
40 ovex 7388 . . . . . 6 (((2nd𝑋) − 1) mod 𝑁) ∈ V
4110, 40opthne 5427 . . . . 5 (⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ↔ (0 ≠ 0 ∨ (((2nd𝑋) − 1) mod 𝑁) ≠ (((2nd𝑋) + 1) mod 𝑁)))
4239, 41sylibr 234 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩)
4313, 20, 423jca 1128 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨1, (2nd𝑋)⟩ ∧ ⟨1, (2nd𝑋)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩))
44 opex 5409 . . . 4 ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ V
45 opex 5409 . . . 4 ⟨1, (2nd𝑋)⟩ ∈ V
46 opex 5409 . . . 4 ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ V
47 hashtpg 14399 . . . 4 ((⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ V ∧ ⟨1, (2nd𝑋)⟩ ∈ V ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ V) → ((⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨1, (2nd𝑋)⟩ ∧ ⟨1, (2nd𝑋)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩) ↔ (♯‘{⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}) = 3))
4844, 45, 46, 47mp3an 1463 . . 3 ((⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨1, (2nd𝑋)⟩ ∧ ⟨1, (2nd𝑋)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩) ↔ (♯‘{⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}) = 3)
4943, 48sylib 218 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (♯‘{⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}) = 3)
506, 49eqtrd 2768 1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (♯‘𝑈) = 3)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2929  Vcvv 3437  {ctp 4581  cop 4583   class class class wbr 5095  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  0cc0 11017  1c1 11018   + caddc 11020  cle 11158  cmin 11355   / cdiv 11785  2c2 12191  3c3 12192  cz 12479  cuz 12742  ..^cfzo 13561  cceil 13702   mod cmo 13780  chash 14244  Vtxcvtx 28995   NeighbVtx cnbgr 29331   gPetersenGr cgpg 48202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-xnn0 12466  df-z 12480  df-dec 12599  df-uz 12743  df-rp 12897  df-fz 13415  df-fzo 13562  df-fl 13703  df-ceil 13704  df-mod 13781  df-hash 14245  df-dvds 16171  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-edgf 28988  df-vtx 28997  df-iedg 28998  df-edg 29047  df-upgr 29081  df-umgr 29082  df-usgr 29150  df-nbgr 29332  df-gpg 48203
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator