Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg3nbgrvtx0ALT Structured version   Visualization version   GIF version

Theorem gpg3nbgrvtx0ALT 48006
Description: In a generalized Petersen graph 𝐺, every outside vertex has exactly three (different) neighbors. (Contributed by AV, 30-Aug-2025.)

The proof of gpg3nbgrvtx0 48005 can be shortened using lemma gpg3nbgrvtxlem 47996, but then theorem 2ltceilhalf 47988 is required which is based on an "example" ex-ceil 30457. If these theorems were moved to main, the "example" should also be moved up to become a full-fledged theorem. (Proof shortened by AV, 4-Sep-2025.) (Proof modification is discouraged.) (New usage is discouraged.)

Hypotheses
Ref Expression
gpgnbgr.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgnbgr.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgnbgr.v 𝑉 = (Vtx‘𝐺)
gpgnbgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
Assertion
Ref Expression
gpg3nbgrvtx0ALT (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (♯‘𝑈) = 3)

Proof of Theorem gpg3nbgrvtx0ALT
StepHypRef Expression
1 gpgnbgr.j . . . 4 𝐽 = (1..^(⌈‘(𝑁 / 2)))
2 gpgnbgr.g . . . 4 𝐺 = (𝑁 gPetersenGr 𝐾)
3 gpgnbgr.v . . . 4 𝑉 = (Vtx‘𝐺)
4 gpgnbgr.u . . . 4 𝑈 = (𝐺 NeighbVtx 𝑋)
51, 2, 3, 4gpgnbgrvtx0 48003 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑈 = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})
65fveq2d 6908 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (♯‘𝑈) = (♯‘{⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}))
7 0ne1 12333 . . . . . . 7 0 ≠ 1
87a1i 11 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 0 ≠ 1)
98orcd 874 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (0 ≠ 1 ∨ (((2nd𝑋) + 1) mod 𝑁) ≠ (2nd𝑋)))
10 c0ex 11251 . . . . . 6 0 ∈ V
11 ovex 7462 . . . . . 6 (((2nd𝑋) + 1) mod 𝑁) ∈ V
1210, 11opthne 5485 . . . . 5 (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨1, (2nd𝑋)⟩ ↔ (0 ≠ 1 ∨ (((2nd𝑋) + 1) mod 𝑁) ≠ (2nd𝑋)))
139, 12sylibr 234 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨1, (2nd𝑋)⟩)
14 ax-1ne0 11220 . . . . . . 7 1 ≠ 0
1514a1i 11 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 1 ≠ 0)
1615orcd 874 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (1 ≠ 0 ∨ (2nd𝑋) ≠ (((2nd𝑋) − 1) mod 𝑁)))
17 1ex 11253 . . . . . 6 1 ∈ V
18 fvex 6917 . . . . . 6 (2nd𝑋) ∈ V
1917, 18opthne 5485 . . . . 5 (⟨1, (2nd𝑋)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ↔ (1 ≠ 0 ∨ (2nd𝑋) ≠ (((2nd𝑋) − 1) mod 𝑁)))
2016, 19sylibr 234 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ⟨1, (2nd𝑋)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)
21 simpll 767 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑁 ∈ (ℤ‘3))
22 2z 12645 . . . . . . . . . . . . 13 2 ∈ ℤ
2322a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℤ)
24 eluzelre 12885 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℝ)
2524rehalfcld 12509 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) → (𝑁 / 2) ∈ ℝ)
2625ceilcld 13879 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → (⌈‘(𝑁 / 2)) ∈ ℤ)
27 2ltceilhalf 47988 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → 2 ≤ (⌈‘(𝑁 / 2)))
28 eluz2 12880 . . . . . . . . . . . 12 ((⌈‘(𝑁 / 2)) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (⌈‘(𝑁 / 2)) ∈ ℤ ∧ 2 ≤ (⌈‘(𝑁 / 2))))
2923, 26, 27, 28syl3anbrc 1344 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → (⌈‘(𝑁 / 2)) ∈ (ℤ‘2))
3029adantr 480 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (⌈‘(𝑁 / 2)) ∈ (ℤ‘2))
3130adantr 480 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (⌈‘(𝑁 / 2)) ∈ (ℤ‘2))
32 fzo1lb 13749 . . . . . . . . 9 (1 ∈ (1..^(⌈‘(𝑁 / 2))) ↔ (⌈‘(𝑁 / 2)) ∈ (ℤ‘2))
3331, 32sylibr 234 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 1 ∈ (1..^(⌈‘(𝑁 / 2))))
34 eqid 2736 . . . . . . . . . 10 (0..^𝑁) = (0..^𝑁)
3534, 1, 2, 3gpgvtxel2 47979 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (2nd𝑋) ∈ (0..^𝑁))
3635adantrr 717 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (2nd𝑋) ∈ (0..^𝑁))
37 gpg3nbgrvtxlem 47996 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 1 ∈ (1..^(⌈‘(𝑁 / 2))) ∧ (2nd𝑋) ∈ (0..^𝑁)) → (((2nd𝑋) + 1) mod 𝑁) ≠ (((2nd𝑋) − 1) mod 𝑁))
3821, 33, 36, 37syl3anc 1373 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) + 1) mod 𝑁) ≠ (((2nd𝑋) − 1) mod 𝑁))
3938necomd 2995 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (((2nd𝑋) − 1) mod 𝑁) ≠ (((2nd𝑋) + 1) mod 𝑁))
4039olcd 875 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (0 ≠ 0 ∨ (((2nd𝑋) − 1) mod 𝑁) ≠ (((2nd𝑋) + 1) mod 𝑁)))
41 ovex 7462 . . . . . 6 (((2nd𝑋) − 1) mod 𝑁) ∈ V
4210, 41opthne 5485 . . . . 5 (⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ↔ (0 ≠ 0 ∨ (((2nd𝑋) − 1) mod 𝑁) ≠ (((2nd𝑋) + 1) mod 𝑁)))
4340, 42sylibr 234 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩)
4413, 20, 433jca 1129 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨1, (2nd𝑋)⟩ ∧ ⟨1, (2nd𝑋)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩))
45 opex 5467 . . . 4 ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ V
46 opex 5467 . . . 4 ⟨1, (2nd𝑋)⟩ ∈ V
47 opex 5467 . . . 4 ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ V
48 hashtpg 14520 . . . 4 ((⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ V ∧ ⟨1, (2nd𝑋)⟩ ∈ V ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ V) → ((⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨1, (2nd𝑋)⟩ ∧ ⟨1, (2nd𝑋)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩) ↔ (♯‘{⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}) = 3))
4945, 46, 47, 48mp3an 1463 . . 3 ((⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨1, (2nd𝑋)⟩ ∧ ⟨1, (2nd𝑋)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩) ↔ (♯‘{⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}) = 3)
5044, 49sylib 218 . 2 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (♯‘{⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}) = 3)
516, 50eqtrd 2776 1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (♯‘𝑈) = 3)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2939  Vcvv 3479  {ctp 4628  cop 4630   class class class wbr 5141  cfv 6559  (class class class)co 7429  1st c1st 8008  2nd c2nd 8009  0cc0 11151  1c1 11152   + caddc 11154  cle 11292  cmin 11488   / cdiv 11916  2c2 12317  3c3 12318  cz 12609  cuz 12874  ..^cfzo 13690  cceil 13827   mod cmo 13905  chash 14365  Vtxcvtx 29003   NeighbVtx cnbgr 29339   gPetersenGr cgpg 47972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-cnex 11207  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228  ax-pre-sup 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4906  df-int 4945  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-om 7884  df-1st 8010  df-2nd 8011  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-1o 8502  df-2o 8503  df-oadd 8506  df-er 8741  df-en 8982  df-dom 8983  df-sdom 8984  df-fin 8985  df-sup 9478  df-inf 9479  df-dju 9937  df-card 9975  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-div 11917  df-nn 12263  df-2 12325  df-3 12326  df-4 12327  df-5 12328  df-6 12329  df-7 12330  df-8 12331  df-9 12332  df-n0 12523  df-xnn0 12596  df-z 12610  df-dec 12730  df-uz 12875  df-rp 13031  df-fz 13544  df-fzo 13691  df-fl 13828  df-ceil 13829  df-mod 13906  df-hash 14366  df-dvds 16287  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17244  df-edgf 28994  df-vtx 29005  df-iedg 29006  df-edg 29055  df-upgr 29089  df-umgr 29090  df-usgr 29158  df-nbgr 29340  df-gpg 47973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator