| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgr2wspthons3 | Structured version Visualization version GIF version | ||
| Description: A simple path of length 2 between two vertices represented as length 3 string corresponds to two adjacent edges in a simple graph. (Contributed by Alexander van der Vekens, 8-Mar-2018.) (Revised by AV, 17-May-2021.) (Proof shortened by AV, 16-Mar-2022.) |
| Ref | Expression |
|---|---|
| usgr2wspthon0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| usgr2wspthon0.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| usgr2wspthons3 | ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 12270 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 2 | ne0i 4312 | . . . . . . 7 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴(2 WSPathsNOn 𝐺)𝐶) ≠ ∅) | |
| 3 | wspthsnonn0vne 29854 | . . . . . . 7 ⊢ ((2 ∈ ℕ ∧ (𝐴(2 WSPathsNOn 𝐺)𝐶) ≠ ∅) → 𝐴 ≠ 𝐶) | |
| 4 | 1, 2, 3 | sylancr 587 | . . . . . 6 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → 𝐴 ≠ 𝐶) |
| 5 | simplr 768 | . . . . . . . . 9 ⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶) ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝐴 ≠ 𝐶) | |
| 6 | wpthswwlks2on 29898 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶) → (𝐴(2 WSPathsNOn 𝐺)𝐶) = (𝐴(2 WWalksNOn 𝐺)𝐶)) | |
| 7 | 6 | eleq2d 2815 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
| 8 | 7 | biimpa 476 | . . . . . . . . 9 ⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶) ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) |
| 9 | 5, 8 | jca 511 | . . . . . . . 8 ⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶) ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
| 10 | 9 | exp31 419 | . . . . . . 7 ⊢ (𝐺 ∈ USGraph → (𝐴 ≠ 𝐶 → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))) |
| 11 | 10 | com13 88 | . . . . . 6 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴 ≠ 𝐶 → (𝐺 ∈ USGraph → (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))) |
| 12 | 4, 11 | mpd 15 | . . . . 5 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐺 ∈ USGraph → (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) |
| 13 | 12 | com12 32 | . . . 4 ⊢ (𝐺 ∈ USGraph → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) |
| 14 | 7 | biimprd 248 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))) |
| 15 | 14 | expimpd 453 | . . . 4 ⊢ (𝐺 ∈ USGraph → ((𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))) |
| 16 | 13, 15 | impbid 212 | . . 3 ⊢ (𝐺 ∈ USGraph → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) |
| 17 | 16 | adantr 480 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) |
| 18 | usgrumgr 29115 | . . . . 5 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph) | |
| 19 | usgr2wspthon0.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 20 | usgr2wspthon0.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
| 21 | 19, 20 | umgrwwlks2on 29894 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) |
| 22 | 18, 21 | sylan 580 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) |
| 23 | 22 | anbi2d 630 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝐴 ≠ 𝐶 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))) |
| 24 | 3anass 1094 | . . 3 ⊢ ((𝐴 ≠ 𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐴 ≠ 𝐶 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) | |
| 25 | 23, 24 | bitr4di 289 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) |
| 26 | 17, 25 | bitrd 279 | 1 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 ∅c0 4304 {cpr 4599 ‘cfv 6519 (class class class)co 7394 ℕcn 12197 2c2 12252 〈“cs3 14818 Vtxcvtx 28930 Edgcedg 28981 UMGraphcumgr 29015 USGraphcusgr 29083 WWalksNOn cwwlksnon 29764 WSPathsNOn cwwspthsnon 29766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-ac2 10434 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-oadd 8447 df-er 8682 df-map 8805 df-pm 8806 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-dju 9872 df-card 9910 df-ac 10087 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-n0 12459 df-xnn0 12532 df-z 12546 df-uz 12810 df-fz 13482 df-fzo 13629 df-hash 14306 df-word 14489 df-concat 14546 df-s1 14571 df-s2 14824 df-s3 14825 df-edg 28982 df-uhgr 28992 df-upgr 29016 df-umgr 29017 df-uspgr 29084 df-usgr 29085 df-wlks 29534 df-wlkson 29535 df-trls 29627 df-trlson 29628 df-pths 29651 df-spths 29652 df-pthson 29653 df-spthson 29654 df-wwlks 29767 df-wwlksn 29768 df-wwlksnon 29769 df-wspthsnon 29771 |
| This theorem is referenced by: usgr2wspthon 29902 |
| Copyright terms: Public domain | W3C validator |