MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2wspthons3 Structured version   Visualization version   GIF version

Theorem usgr2wspthons3 27753
Description: A simple path of length 2 between two vertices represented as length 3 string corresponds to two adjacent edges in a simple graph. (Contributed by Alexander van der Vekens, 8-Mar-2018.) (Revised by AV, 17-May-2021.) (Proof shortened by AV, 16-Mar-2022.)
Hypotheses
Ref Expression
usgr2wspthon0.v 𝑉 = (Vtx‘𝐺)
usgr2wspthon0.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
usgr2wspthons3 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))

Proof of Theorem usgr2wspthons3
StepHypRef Expression
1 2nn 11702 . . . . . . 7 2 ∈ ℕ
2 ne0i 4253 . . . . . . 7 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴(2 WSPathsNOn 𝐺)𝐶) ≠ ∅)
3 wspthsnonn0vne 27706 . . . . . . 7 ((2 ∈ ℕ ∧ (𝐴(2 WSPathsNOn 𝐺)𝐶) ≠ ∅) → 𝐴𝐶)
41, 2, 3sylancr 590 . . . . . 6 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → 𝐴𝐶)
5 simplr 768 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝐴𝐶) ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝐴𝐶)
6 wpthswwlks2on 27750 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ 𝐴𝐶) → (𝐴(2 WSPathsNOn 𝐺)𝐶) = (𝐴(2 WWalksNOn 𝐺)𝐶))
76eleq2d 2878 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝐴𝐶) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
87biimpa 480 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝐴𝐶) ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))
95, 8jca 515 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝐴𝐶) ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → (𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
109exp31 423 . . . . . . 7 (𝐺 ∈ USGraph → (𝐴𝐶 → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))))
1110com13 88 . . . . . 6 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴𝐶 → (𝐺 ∈ USGraph → (𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))))
124, 11mpd 15 . . . . 5 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐺 ∈ USGraph → (𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
1312com12 32 . . . 4 (𝐺 ∈ USGraph → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
147biimprd 251 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐴𝐶) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))
1514expimpd 457 . . . 4 (𝐺 ∈ USGraph → ((𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))
1613, 15impbid 215 . . 3 (𝐺 ∈ USGraph → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
1716adantr 484 . 2 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
18 usgrumgr 26975 . . . . 5 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
19 usgr2wspthon0.v . . . . . 6 𝑉 = (Vtx‘𝐺)
20 usgr2wspthon0.e . . . . . 6 𝐸 = (Edg‘𝐺)
2119, 20umgrwwlks2on 27746 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
2218, 21sylan 583 . . . 4 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
2322anbi2d 631 . . 3 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝐴𝐶 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))))
24 3anass 1092 . . 3 ((𝐴𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐴𝐶 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
2523, 24syl6bbr 292 . 2 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝐴𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
2617, 25bitrd 282 1 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  c0 4246  {cpr 4530  cfv 6328  (class class class)co 7139  cn 11629  2c2 11684  ⟨“cs3 14199  Vtxcvtx 26792  Edgcedg 26843  UMGraphcumgr 26877  USGraphcusgr 26945   WWalksNOn cwwlksnon 27616   WSPathsNOn cwwspthsnon 27618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-ac2 9878  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-dju 9318  df-card 9356  df-ac 9531  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-fz 12890  df-fzo 13033  df-hash 13691  df-word 13862  df-concat 13918  df-s1 13945  df-s2 14205  df-s3 14206  df-edg 26844  df-uhgr 26854  df-upgr 26878  df-umgr 26879  df-uspgr 26946  df-usgr 26947  df-wlks 27392  df-wlkson 27393  df-trls 27485  df-trlson 27486  df-pths 27508  df-spths 27509  df-pthson 27510  df-spthson 27511  df-wwlks 27619  df-wwlksn 27620  df-wwlksnon 27621  df-wspthsnon 27623
This theorem is referenced by:  usgr2wspthon  27754
  Copyright terms: Public domain W3C validator