| Metamath Proof Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > usgr2wspthons3 | Structured version Visualization version GIF version | ||
| Description: A simple path of length 2 between two vertices represented as length 3 string corresponds to two adjacent edges in a simple graph. (Contributed by Alexander van der Vekens, 8-Mar-2018.) (Revised by AV, 17-May-2021.) (Proof shortened by AV, 16-Mar-2022.) | 
| Ref | Expression | 
|---|---|
| usgr2wspthon0.v | ⊢ 𝑉 = (Vtx‘𝐺) | 
| usgr2wspthon0.e | ⊢ 𝐸 = (Edg‘𝐺) | 
| Ref | Expression | 
|---|---|
| usgr2wspthons3 | ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2nn 12320 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 2 | ne0i 4321 | . . . . . . 7 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴(2 WSPathsNOn 𝐺)𝐶) ≠ ∅) | |
| 3 | wspthsnonn0vne 29864 | . . . . . . 7 ⊢ ((2 ∈ ℕ ∧ (𝐴(2 WSPathsNOn 𝐺)𝐶) ≠ ∅) → 𝐴 ≠ 𝐶) | |
| 4 | 1, 2, 3 | sylancr 587 | . . . . . 6 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → 𝐴 ≠ 𝐶) | 
| 5 | simplr 768 | . . . . . . . . 9 ⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶) ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝐴 ≠ 𝐶) | |
| 6 | wpthswwlks2on 29908 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶) → (𝐴(2 WSPathsNOn 𝐺)𝐶) = (𝐴(2 WWalksNOn 𝐺)𝐶)) | |
| 7 | 6 | eleq2d 2819 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) | 
| 8 | 7 | biimpa 476 | . . . . . . . . 9 ⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶) ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) | 
| 9 | 5, 8 | jca 511 | . . . . . . . 8 ⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶) ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) | 
| 10 | 9 | exp31 419 | . . . . . . 7 ⊢ (𝐺 ∈ USGraph → (𝐴 ≠ 𝐶 → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))) | 
| 11 | 10 | com13 88 | . . . . . 6 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴 ≠ 𝐶 → (𝐺 ∈ USGraph → (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))) | 
| 12 | 4, 11 | mpd 15 | . . . . 5 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐺 ∈ USGraph → (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) | 
| 13 | 12 | com12 32 | . . . 4 ⊢ (𝐺 ∈ USGraph → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) | 
| 14 | 7 | biimprd 248 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))) | 
| 15 | 14 | expimpd 453 | . . . 4 ⊢ (𝐺 ∈ USGraph → ((𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))) | 
| 16 | 13, 15 | impbid 212 | . . 3 ⊢ (𝐺 ∈ USGraph → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) | 
| 17 | 16 | adantr 480 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) | 
| 18 | usgrumgr 29125 | . . . . 5 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph) | |
| 19 | usgr2wspthon0.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 20 | usgr2wspthon0.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
| 21 | 19, 20 | umgrwwlks2on 29904 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) | 
| 22 | 18, 21 | sylan 580 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) | 
| 23 | 22 | anbi2d 630 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝐴 ≠ 𝐶 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))) | 
| 24 | 3anass 1094 | . . 3 ⊢ ((𝐴 ≠ 𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐴 ≠ 𝐶 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) | |
| 25 | 23, 24 | bitr4di 289 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) | 
| 26 | 17, 25 | bitrd 279 | 1 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∅c0 4313 {cpr 4608 ‘cfv 6540 (class class class)co 7412 ℕcn 12247 2c2 12302 〈“cs3 14862 Vtxcvtx 28940 Edgcedg 28991 UMGraphcumgr 29025 USGraphcusgr 29093 WWalksNOn cwwlksnon 29774 WSPathsNOn cwwspthsnon 29776 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-ac2 10484 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-er 8726 df-map 8849 df-pm 8850 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-dju 9922 df-card 9960 df-ac 10137 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-3 12311 df-n0 12509 df-xnn0 12582 df-z 12596 df-uz 12860 df-fz 13529 df-fzo 13676 df-hash 14351 df-word 14534 df-concat 14590 df-s1 14615 df-s2 14868 df-s3 14869 df-edg 28992 df-uhgr 29002 df-upgr 29026 df-umgr 29027 df-uspgr 29094 df-usgr 29095 df-wlks 29544 df-wlkson 29545 df-trls 29637 df-trlson 29638 df-pths 29661 df-spths 29662 df-pthson 29663 df-spthson 29664 df-wwlks 29777 df-wwlksn 29778 df-wwlksnon 29779 df-wspthsnon 29781 | 
| This theorem is referenced by: usgr2wspthon 29912 | 
| Copyright terms: Public domain | W3C validator |