Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > usgr2wspthons3 | Structured version Visualization version GIF version |
Description: A simple path of length 2 between two vertices represented as length 3 string corresponds to two adjacent edges in a simple graph. (Contributed by Alexander van der Vekens, 8-Mar-2018.) (Revised by AV, 17-May-2021.) (Proof shortened by AV, 16-Mar-2022.) |
Ref | Expression |
---|---|
usgr2wspthon0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
usgr2wspthon0.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
usgr2wspthons3 | ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 11976 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
2 | ne0i 4265 | . . . . . . 7 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴(2 WSPathsNOn 𝐺)𝐶) ≠ ∅) | |
3 | wspthsnonn0vne 28183 | . . . . . . 7 ⊢ ((2 ∈ ℕ ∧ (𝐴(2 WSPathsNOn 𝐺)𝐶) ≠ ∅) → 𝐴 ≠ 𝐶) | |
4 | 1, 2, 3 | sylancr 586 | . . . . . 6 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → 𝐴 ≠ 𝐶) |
5 | simplr 765 | . . . . . . . . 9 ⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶) ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝐴 ≠ 𝐶) | |
6 | wpthswwlks2on 28227 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶) → (𝐴(2 WSPathsNOn 𝐺)𝐶) = (𝐴(2 WWalksNOn 𝐺)𝐶)) | |
7 | 6 | eleq2d 2824 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
8 | 7 | biimpa 476 | . . . . . . . . 9 ⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶) ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) |
9 | 5, 8 | jca 511 | . . . . . . . 8 ⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶) ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
10 | 9 | exp31 419 | . . . . . . 7 ⊢ (𝐺 ∈ USGraph → (𝐴 ≠ 𝐶 → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))) |
11 | 10 | com13 88 | . . . . . 6 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴 ≠ 𝐶 → (𝐺 ∈ USGraph → (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))) |
12 | 4, 11 | mpd 15 | . . . . 5 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐺 ∈ USGraph → (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) |
13 | 12 | com12 32 | . . . 4 ⊢ (𝐺 ∈ USGraph → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) |
14 | 7 | biimprd 247 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))) |
15 | 14 | expimpd 453 | . . . 4 ⊢ (𝐺 ∈ USGraph → ((𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))) |
16 | 13, 15 | impbid 211 | . . 3 ⊢ (𝐺 ∈ USGraph → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) |
17 | 16 | adantr 480 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) |
18 | usgrumgr 27452 | . . . . 5 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph) | |
19 | usgr2wspthon0.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
20 | usgr2wspthon0.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
21 | 19, 20 | umgrwwlks2on 28223 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) |
22 | 18, 21 | sylan 579 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) |
23 | 22 | anbi2d 628 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝐴 ≠ 𝐶 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))) |
24 | 3anass 1093 | . . 3 ⊢ ((𝐴 ≠ 𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐴 ≠ 𝐶 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) | |
25 | 23, 24 | bitr4di 288 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) |
26 | 17, 25 | bitrd 278 | 1 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 {cpr 4560 ‘cfv 6418 (class class class)co 7255 ℕcn 11903 2c2 11958 〈“cs3 14483 Vtxcvtx 27269 Edgcedg 27320 UMGraphcumgr 27354 USGraphcusgr 27422 WWalksNOn cwwlksnon 28093 WSPathsNOn cwwspthsnon 28095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-ac2 10150 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-ac 9803 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-s2 14489 df-s3 14490 df-edg 27321 df-uhgr 27331 df-upgr 27355 df-umgr 27356 df-uspgr 27423 df-usgr 27424 df-wlks 27869 df-wlkson 27870 df-trls 27962 df-trlson 27963 df-pths 27985 df-spths 27986 df-pthson 27987 df-spthson 27988 df-wwlks 28096 df-wwlksn 28097 df-wwlksnon 28098 df-wspthsnon 28100 |
This theorem is referenced by: usgr2wspthon 28231 |
Copyright terms: Public domain | W3C validator |