MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2wspthons3 Structured version   Visualization version   GIF version

Theorem usgr2wspthons3 30010
Description: A simple path of length 2 between two vertices represented as length 3 string corresponds to two adjacent edges in a simple graph. (Contributed by Alexander van der Vekens, 8-Mar-2018.) (Revised by AV, 17-May-2021.) (Proof shortened by AV, 16-Mar-2022.)
Hypotheses
Ref Expression
usgr2wspthon0.v 𝑉 = (Vtx‘𝐺)
usgr2wspthon0.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
usgr2wspthons3 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))

Proof of Theorem usgr2wspthons3
StepHypRef Expression
1 2nn 12346 . . . . . . 7 2 ∈ ℕ
2 ne0i 4350 . . . . . . 7 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴(2 WSPathsNOn 𝐺)𝐶) ≠ ∅)
3 wspthsnonn0vne 29963 . . . . . . 7 ((2 ∈ ℕ ∧ (𝐴(2 WSPathsNOn 𝐺)𝐶) ≠ ∅) → 𝐴𝐶)
41, 2, 3sylancr 587 . . . . . 6 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → 𝐴𝐶)
5 simplr 769 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝐴𝐶) ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝐴𝐶)
6 wpthswwlks2on 30007 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ 𝐴𝐶) → (𝐴(2 WSPathsNOn 𝐺)𝐶) = (𝐴(2 WWalksNOn 𝐺)𝐶))
76eleq2d 2827 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝐴𝐶) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
87biimpa 476 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝐴𝐶) ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))
95, 8jca 511 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝐴𝐶) ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → (𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
109exp31 419 . . . . . . 7 (𝐺 ∈ USGraph → (𝐴𝐶 → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))))
1110com13 88 . . . . . 6 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴𝐶 → (𝐺 ∈ USGraph → (𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))))
124, 11mpd 15 . . . . 5 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐺 ∈ USGraph → (𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
1312com12 32 . . . 4 (𝐺 ∈ USGraph → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
147biimprd 248 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐴𝐶) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))
1514expimpd 453 . . . 4 (𝐺 ∈ USGraph → ((𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))
1613, 15impbid 212 . . 3 (𝐺 ∈ USGraph → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
1716adantr 480 . 2 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
18 usgrumgr 29224 . . . . 5 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
19 usgr2wspthon0.v . . . . . 6 𝑉 = (Vtx‘𝐺)
20 usgr2wspthon0.e . . . . . 6 𝐸 = (Edg‘𝐺)
2119, 20umgrwwlks2on 30003 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
2218, 21sylan 580 . . . 4 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
2322anbi2d 630 . . 3 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝐴𝐶 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))))
24 3anass 1095 . . 3 ((𝐴𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐴𝐶 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
2523, 24bitr4di 289 . 2 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝐴𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
2617, 25bitrd 279 1 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1539  wcel 2108  wne 2940  c0 4342  {cpr 4636  cfv 6569  (class class class)co 7438  cn 12273  2c2 12328  ⟨“cs3 14887  Vtxcvtx 29039  Edgcedg 29090  UMGraphcumgr 29124  USGraphcusgr 29192   WWalksNOn cwwlksnon 29873   WSPathsNOn cwwspthsnon 29875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-ac2 10510  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-se 5646  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-isom 6578  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-2o 8515  df-oadd 8518  df-er 8753  df-map 8876  df-pm 8877  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-dju 9948  df-card 9986  df-ac 10163  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-2 12336  df-3 12337  df-n0 12534  df-xnn0 12607  df-z 12621  df-uz 12886  df-fz 13554  df-fzo 13701  df-hash 14376  df-word 14559  df-concat 14615  df-s1 14640  df-s2 14893  df-s3 14894  df-edg 29091  df-uhgr 29101  df-upgr 29125  df-umgr 29126  df-uspgr 29193  df-usgr 29194  df-wlks 29643  df-wlkson 29644  df-trls 29736  df-trlson 29737  df-pths 29760  df-spths 29761  df-pthson 29762  df-spthson 29763  df-wwlks 29876  df-wwlksn 29877  df-wwlksnon 29878  df-wspthsnon 29880
This theorem is referenced by:  usgr2wspthon  30011
  Copyright terms: Public domain W3C validator