MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem8 Structured version   Visualization version   GIF version

Theorem 4sqlem8 16723
Description: Lemma for 4sq 16742. (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2 (𝜑𝐴 ∈ ℤ)
4sqlem5.3 (𝜑𝑀 ∈ ℕ)
4sqlem5.4 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
Assertion
Ref Expression
4sqlem8 (𝜑𝑀 ∥ ((𝐴↑2) − (𝐵↑2)))

Proof of Theorem 4sqlem8
StepHypRef Expression
1 4sqlem5.3 . . 3 (𝜑𝑀 ∈ ℕ)
21nnzd 12505 . 2 (𝜑𝑀 ∈ ℤ)
3 4sqlem5.2 . . 3 (𝜑𝐴 ∈ ℤ)
4 4sqlem5.4 . . . . 5 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
53, 1, 44sqlem5 16720 . . . 4 (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))
65simpld 495 . . 3 (𝜑𝐵 ∈ ℤ)
73, 6zsubcld 12511 . 2 (𝜑 → (𝐴𝐵) ∈ ℤ)
8 zsqcl 13928 . . . 4 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
93, 8syl 17 . . 3 (𝜑 → (𝐴↑2) ∈ ℤ)
10 zsqcl 13928 . . . 4 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
116, 10syl 17 . . 3 (𝜑 → (𝐵↑2) ∈ ℤ)
129, 11zsubcld 12511 . 2 (𝜑 → ((𝐴↑2) − (𝐵↑2)) ∈ ℤ)
135simprd 496 . . 3 (𝜑 → ((𝐴𝐵) / 𝑀) ∈ ℤ)
141nnne0d 12103 . . . 4 (𝜑𝑀 ≠ 0)
15 dvdsval2 16045 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (𝐴𝐵) ∈ ℤ) → (𝑀 ∥ (𝐴𝐵) ↔ ((𝐴𝐵) / 𝑀) ∈ ℤ))
162, 14, 7, 15syl3anc 1370 . . 3 (𝜑 → (𝑀 ∥ (𝐴𝐵) ↔ ((𝐴𝐵) / 𝑀) ∈ ℤ))
1713, 16mpbird 256 . 2 (𝜑𝑀 ∥ (𝐴𝐵))
183, 6zaddcld 12510 . . . 4 (𝜑 → (𝐴 + 𝐵) ∈ ℤ)
19 dvdsmul2 16067 . . . 4 (((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
2018, 7, 19syl2anc 584 . . 3 (𝜑 → (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
213zcnd 12507 . . . 4 (𝜑𝐴 ∈ ℂ)
226zcnd 12507 . . . 4 (𝜑𝐵 ∈ ℂ)
23 subsq 14006 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
2421, 22, 23syl2anc 584 . . 3 (𝜑 → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
2520, 24breqtrrd 5115 . 2 (𝜑 → (𝐴𝐵) ∥ ((𝐴↑2) − (𝐵↑2)))
262, 7, 12, 17, 25dvdstrd 16083 1 (𝜑𝑀 ∥ ((𝐴↑2) − (𝐵↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  wcel 2105  wne 2941   class class class wbr 5087  (class class class)co 7317  cc 10949  0cc0 10951   + caddc 10954   · cmul 10956  cmin 11285   / cdiv 11712  cn 12053  2c2 12108  cz 12399   mod cmo 13669  cexp 13862  cdvds 16042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028  ax-pre-sup 11029
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-om 7760  df-2nd 7879  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-er 8548  df-en 8784  df-dom 8785  df-sdom 8786  df-sup 9278  df-inf 9279  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-div 11713  df-nn 12054  df-2 12116  df-n0 12314  df-z 12400  df-uz 12663  df-rp 12811  df-fl 13592  df-mod 13670  df-seq 13802  df-exp 13863  df-dvds 16043
This theorem is referenced by:  4sqlem14  16736  2sqlem8  26657
  Copyright terms: Public domain W3C validator