MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem8 Structured version   Visualization version   GIF version

Theorem 4sqlem8 16979
Description: Lemma for 4sq 16998. (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2 (𝜑𝐴 ∈ ℤ)
4sqlem5.3 (𝜑𝑀 ∈ ℕ)
4sqlem5.4 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
Assertion
Ref Expression
4sqlem8 (𝜑𝑀 ∥ ((𝐴↑2) − (𝐵↑2)))

Proof of Theorem 4sqlem8
StepHypRef Expression
1 4sqlem5.3 . . 3 (𝜑𝑀 ∈ ℕ)
21nnzd 12638 . 2 (𝜑𝑀 ∈ ℤ)
3 4sqlem5.2 . . 3 (𝜑𝐴 ∈ ℤ)
4 4sqlem5.4 . . . . 5 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
53, 1, 44sqlem5 16976 . . . 4 (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))
65simpld 494 . . 3 (𝜑𝐵 ∈ ℤ)
73, 6zsubcld 12725 . 2 (𝜑 → (𝐴𝐵) ∈ ℤ)
8 zsqcl 14166 . . . 4 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
93, 8syl 17 . . 3 (𝜑 → (𝐴↑2) ∈ ℤ)
10 zsqcl 14166 . . . 4 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
116, 10syl 17 . . 3 (𝜑 → (𝐵↑2) ∈ ℤ)
129, 11zsubcld 12725 . 2 (𝜑 → ((𝐴↑2) − (𝐵↑2)) ∈ ℤ)
135simprd 495 . . 3 (𝜑 → ((𝐴𝐵) / 𝑀) ∈ ℤ)
141nnne0d 12314 . . . 4 (𝜑𝑀 ≠ 0)
15 dvdsval2 16290 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (𝐴𝐵) ∈ ℤ) → (𝑀 ∥ (𝐴𝐵) ↔ ((𝐴𝐵) / 𝑀) ∈ ℤ))
162, 14, 7, 15syl3anc 1370 . . 3 (𝜑 → (𝑀 ∥ (𝐴𝐵) ↔ ((𝐴𝐵) / 𝑀) ∈ ℤ))
1713, 16mpbird 257 . 2 (𝜑𝑀 ∥ (𝐴𝐵))
183, 6zaddcld 12724 . . . 4 (𝜑 → (𝐴 + 𝐵) ∈ ℤ)
19 dvdsmul2 16313 . . . 4 (((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
2018, 7, 19syl2anc 584 . . 3 (𝜑 → (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
213zcnd 12721 . . . 4 (𝜑𝐴 ∈ ℂ)
226zcnd 12721 . . . 4 (𝜑𝐵 ∈ ℂ)
23 subsq 14246 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
2421, 22, 23syl2anc 584 . . 3 (𝜑 → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
2520, 24breqtrrd 5176 . 2 (𝜑 → (𝐴𝐵) ∥ ((𝐴↑2) − (𝐵↑2)))
262, 7, 12, 17, 25dvdstrd 16329 1 (𝜑𝑀 ∥ ((𝐴↑2) − (𝐵↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  (class class class)co 7431  cc 11151  0cc0 11153   + caddc 11156   · cmul 11158  cmin 11490   / cdiv 11918  cn 12264  2c2 12319  cz 12611   mod cmo 13906  cexp 14099  cdvds 16287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-dvds 16288
This theorem is referenced by:  4sqlem14  16992  2sqlem8  27485
  Copyright terms: Public domain W3C validator