![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4sqlem8 | Structured version Visualization version GIF version |
Description: Lemma for 4sq 16893. (Contributed by Mario Carneiro, 15-Jul-2014.) |
Ref | Expression |
---|---|
4sqlem5.2 | โข (๐ โ ๐ด โ โค) |
4sqlem5.3 | โข (๐ โ ๐ โ โ) |
4sqlem5.4 | โข ๐ต = (((๐ด + (๐ / 2)) mod ๐) โ (๐ / 2)) |
Ref | Expression |
---|---|
4sqlem8 | โข (๐ โ ๐ โฅ ((๐ดโ2) โ (๐ตโ2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sqlem5.3 | . . 3 โข (๐ โ ๐ โ โ) | |
2 | 1 | nnzd 12581 | . 2 โข (๐ โ ๐ โ โค) |
3 | 4sqlem5.2 | . . 3 โข (๐ โ ๐ด โ โค) | |
4 | 4sqlem5.4 | . . . . 5 โข ๐ต = (((๐ด + (๐ / 2)) mod ๐) โ (๐ / 2)) | |
5 | 3, 1, 4 | 4sqlem5 16871 | . . . 4 โข (๐ โ (๐ต โ โค โง ((๐ด โ ๐ต) / ๐) โ โค)) |
6 | 5 | simpld 495 | . . 3 โข (๐ โ ๐ต โ โค) |
7 | 3, 6 | zsubcld 12667 | . 2 โข (๐ โ (๐ด โ ๐ต) โ โค) |
8 | zsqcl 14090 | . . . 4 โข (๐ด โ โค โ (๐ดโ2) โ โค) | |
9 | 3, 8 | syl 17 | . . 3 โข (๐ โ (๐ดโ2) โ โค) |
10 | zsqcl 14090 | . . . 4 โข (๐ต โ โค โ (๐ตโ2) โ โค) | |
11 | 6, 10 | syl 17 | . . 3 โข (๐ โ (๐ตโ2) โ โค) |
12 | 9, 11 | zsubcld 12667 | . 2 โข (๐ โ ((๐ดโ2) โ (๐ตโ2)) โ โค) |
13 | 5 | simprd 496 | . . 3 โข (๐ โ ((๐ด โ ๐ต) / ๐) โ โค) |
14 | 1 | nnne0d 12258 | . . . 4 โข (๐ โ ๐ โ 0) |
15 | dvdsval2 16196 | . . . 4 โข ((๐ โ โค โง ๐ โ 0 โง (๐ด โ ๐ต) โ โค) โ (๐ โฅ (๐ด โ ๐ต) โ ((๐ด โ ๐ต) / ๐) โ โค)) | |
16 | 2, 14, 7, 15 | syl3anc 1371 | . . 3 โข (๐ โ (๐ โฅ (๐ด โ ๐ต) โ ((๐ด โ ๐ต) / ๐) โ โค)) |
17 | 13, 16 | mpbird 256 | . 2 โข (๐ โ ๐ โฅ (๐ด โ ๐ต)) |
18 | 3, 6 | zaddcld 12666 | . . . 4 โข (๐ โ (๐ด + ๐ต) โ โค) |
19 | dvdsmul2 16218 | . . . 4 โข (((๐ด + ๐ต) โ โค โง (๐ด โ ๐ต) โ โค) โ (๐ด โ ๐ต) โฅ ((๐ด + ๐ต) ยท (๐ด โ ๐ต))) | |
20 | 18, 7, 19 | syl2anc 584 | . . 3 โข (๐ โ (๐ด โ ๐ต) โฅ ((๐ด + ๐ต) ยท (๐ด โ ๐ต))) |
21 | 3 | zcnd 12663 | . . . 4 โข (๐ โ ๐ด โ โ) |
22 | 6 | zcnd 12663 | . . . 4 โข (๐ โ ๐ต โ โ) |
23 | subsq 14170 | . . . 4 โข ((๐ด โ โ โง ๐ต โ โ) โ ((๐ดโ2) โ (๐ตโ2)) = ((๐ด + ๐ต) ยท (๐ด โ ๐ต))) | |
24 | 21, 22, 23 | syl2anc 584 | . . 3 โข (๐ โ ((๐ดโ2) โ (๐ตโ2)) = ((๐ด + ๐ต) ยท (๐ด โ ๐ต))) |
25 | 20, 24 | breqtrrd 5175 | . 2 โข (๐ โ (๐ด โ ๐ต) โฅ ((๐ดโ2) โ (๐ตโ2))) |
26 | 2, 7, 12, 17, 25 | dvdstrd 16234 | 1 โข (๐ โ ๐ โฅ ((๐ดโ2) โ (๐ตโ2))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 = wceq 1541 โ wcel 2106 โ wne 2940 class class class wbr 5147 (class class class)co 7405 โcc 11104 0cc0 11106 + caddc 11109 ยท cmul 11111 โ cmin 11440 / cdiv 11867 โcn 12208 2c2 12263 โคcz 12554 mod cmo 13830 โcexp 14023 โฅ cdvds 16193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-dvds 16194 |
This theorem is referenced by: 4sqlem14 16887 2sqlem8 26918 |
Copyright terms: Public domain | W3C validator |