Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4sqlem8 | Structured version Visualization version GIF version |
Description: Lemma for 4sq 16593. (Contributed by Mario Carneiro, 15-Jul-2014.) |
Ref | Expression |
---|---|
4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
Ref | Expression |
---|---|
4sqlem8 | ⊢ (𝜑 → 𝑀 ∥ ((𝐴↑2) − (𝐵↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sqlem5.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
2 | 1 | nnzd 12354 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
3 | 4sqlem5.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
4 | 4sqlem5.4 | . . . . 5 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
5 | 3, 1, 4 | 4sqlem5 16571 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
6 | 5 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
7 | 3, 6 | zsubcld 12360 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) |
8 | zsqcl 13776 | . . . 4 ⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ) | |
9 | 3, 8 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴↑2) ∈ ℤ) |
10 | zsqcl 13776 | . . . 4 ⊢ (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ) | |
11 | 6, 10 | syl 17 | . . 3 ⊢ (𝜑 → (𝐵↑2) ∈ ℤ) |
12 | 9, 11 | zsubcld 12360 | . 2 ⊢ (𝜑 → ((𝐴↑2) − (𝐵↑2)) ∈ ℤ) |
13 | 5 | simprd 495 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝑀) ∈ ℤ) |
14 | 1 | nnne0d 11953 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 0) |
15 | dvdsval2 15894 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (𝐴 − 𝐵) ∈ ℤ) → (𝑀 ∥ (𝐴 − 𝐵) ↔ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) | |
16 | 2, 14, 7, 15 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝑀 ∥ (𝐴 − 𝐵) ↔ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
17 | 13, 16 | mpbird 256 | . 2 ⊢ (𝜑 → 𝑀 ∥ (𝐴 − 𝐵)) |
18 | 3, 6 | zaddcld 12359 | . . . 4 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℤ) |
19 | dvdsmul2 15916 | . . . 4 ⊢ (((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴 − 𝐵) ∈ ℤ) → (𝐴 − 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴 − 𝐵))) | |
20 | 18, 7, 19 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴 − 𝐵))) |
21 | 3 | zcnd 12356 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
22 | 6 | zcnd 12356 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
23 | subsq 13854 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) | |
24 | 21, 22, 23 | syl2anc 583 | . . 3 ⊢ (𝜑 → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) |
25 | 20, 24 | breqtrrd 5098 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) ∥ ((𝐴↑2) − (𝐵↑2))) |
26 | 2, 7, 12, 17, 25 | dvdstrd 15932 | 1 ⊢ (𝜑 → 𝑀 ∥ ((𝐴↑2) − (𝐵↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 (class class class)co 7255 ℂcc 10800 0cc0 10802 + caddc 10805 · cmul 10807 − cmin 11135 / cdiv 11562 ℕcn 11903 2c2 11958 ℤcz 12249 mod cmo 13517 ↑cexp 13710 ∥ cdvds 15891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-dvds 15892 |
This theorem is referenced by: 4sqlem14 16587 2sqlem8 26479 |
Copyright terms: Public domain | W3C validator |