| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4sqlem9 | Structured version Visualization version GIF version | ||
| Description: Lemma for 4sq 16876. (Contributed by Mario Carneiro, 15-Jul-2014.) |
| Ref | Expression |
|---|---|
| 4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
| 4sqlem9.5 | ⊢ ((𝜑 ∧ 𝜓) → (𝐵↑2) = 0) |
| Ref | Expression |
|---|---|
| 4sqlem9 | ⊢ ((𝜑 ∧ 𝜓) → (𝑀↑2) ∥ (𝐴↑2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sqlem9.5 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → (𝐵↑2) = 0) | |
| 2 | 4sqlem5.2 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 3 | 4sqlem5.3 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 4 | 4sqlem5.4 | . . . . . . . . . . . . 13 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
| 5 | 2, 3, 4 | 4sqlem5 16854 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
| 6 | 5 | simpld 494 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
| 7 | 6 | zcnd 12578 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 8 | sqeq0 14027 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℂ → ((𝐵↑2) = 0 ↔ 𝐵 = 0)) | |
| 9 | 7, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐵↑2) = 0 ↔ 𝐵 = 0)) |
| 10 | 9 | biimpa 476 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐵↑2) = 0) → 𝐵 = 0) |
| 11 | 1, 10 | syldan 591 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝐵 = 0) |
| 12 | 11 | oveq2d 7362 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 − 𝐵) = (𝐴 − 0)) |
| 13 | 2 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ ℤ) |
| 14 | 13 | zcnd 12578 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ ℂ) |
| 15 | 14 | subid1d 11461 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 − 0) = 𝐴) |
| 16 | 12, 15 | eqtrd 2766 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 − 𝐵) = 𝐴) |
| 17 | 16 | oveq1d 7361 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ((𝐴 − 𝐵) / 𝑀) = (𝐴 / 𝑀)) |
| 18 | 5 | simprd 495 | . . . . 5 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝑀) ∈ ℤ) |
| 19 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ((𝐴 − 𝐵) / 𝑀) ∈ ℤ) |
| 20 | 17, 19 | eqeltrrd 2832 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 / 𝑀) ∈ ℤ) |
| 21 | 3 | nnzd 12495 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 22 | 3 | nnne0d 12175 | . . . . 5 ⊢ (𝜑 → 𝑀 ≠ 0) |
| 23 | dvdsval2 16166 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝐴 ∈ ℤ) → (𝑀 ∥ 𝐴 ↔ (𝐴 / 𝑀) ∈ ℤ)) | |
| 24 | 21, 22, 2, 23 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑀 ∥ 𝐴 ↔ (𝐴 / 𝑀) ∈ ℤ)) |
| 25 | 24 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑀 ∥ 𝐴 ↔ (𝐴 / 𝑀) ∈ ℤ)) |
| 26 | 20, 25 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∥ 𝐴) |
| 27 | dvdssq 16478 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀 ∥ 𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2))) | |
| 28 | 21, 13, 27 | syl2an2r 685 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝑀 ∥ 𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2))) |
| 29 | 26, 28 | mpbid 232 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝑀↑2) ∥ (𝐴↑2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5089 (class class class)co 7346 ℂcc 11004 0cc0 11006 + caddc 11009 − cmin 11344 / cdiv 11774 ℕcn 12125 2c2 12180 ℤcz 12468 mod cmo 13773 ↑cexp 13968 ∥ cdvds 16163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 |
| This theorem is referenced by: 4sqlem16 16872 2sqlem8a 27363 |
| Copyright terms: Public domain | W3C validator |