Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4sqlem9 | Structured version Visualization version GIF version |
Description: Lemma for 4sq 16593. (Contributed by Mario Carneiro, 15-Jul-2014.) |
Ref | Expression |
---|---|
4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
4sqlem9.5 | ⊢ ((𝜑 ∧ 𝜓) → (𝐵↑2) = 0) |
Ref | Expression |
---|---|
4sqlem9 | ⊢ ((𝜑 ∧ 𝜓) → (𝑀↑2) ∥ (𝐴↑2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sqlem9.5 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → (𝐵↑2) = 0) | |
2 | 4sqlem5.2 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
3 | 4sqlem5.3 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
4 | 4sqlem5.4 | . . . . . . . . . . . . 13 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
5 | 2, 3, 4 | 4sqlem5 16571 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
6 | 5 | simpld 494 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
7 | 6 | zcnd 12356 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
8 | sqeq0 13768 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℂ → ((𝐵↑2) = 0 ↔ 𝐵 = 0)) | |
9 | 7, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐵↑2) = 0 ↔ 𝐵 = 0)) |
10 | 9 | biimpa 476 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐵↑2) = 0) → 𝐵 = 0) |
11 | 1, 10 | syldan 590 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝐵 = 0) |
12 | 11 | oveq2d 7271 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 − 𝐵) = (𝐴 − 0)) |
13 | 2 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ ℤ) |
14 | 13 | zcnd 12356 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ ℂ) |
15 | 14 | subid1d 11251 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 − 0) = 𝐴) |
16 | 12, 15 | eqtrd 2778 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 − 𝐵) = 𝐴) |
17 | 16 | oveq1d 7270 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ((𝐴 − 𝐵) / 𝑀) = (𝐴 / 𝑀)) |
18 | 5 | simprd 495 | . . . . 5 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝑀) ∈ ℤ) |
19 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ((𝐴 − 𝐵) / 𝑀) ∈ ℤ) |
20 | 17, 19 | eqeltrrd 2840 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 / 𝑀) ∈ ℤ) |
21 | 3 | nnzd 12354 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
22 | 3 | nnne0d 11953 | . . . . 5 ⊢ (𝜑 → 𝑀 ≠ 0) |
23 | dvdsval2 15894 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝐴 ∈ ℤ) → (𝑀 ∥ 𝐴 ↔ (𝐴 / 𝑀) ∈ ℤ)) | |
24 | 21, 22, 2, 23 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → (𝑀 ∥ 𝐴 ↔ (𝐴 / 𝑀) ∈ ℤ)) |
25 | 24 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑀 ∥ 𝐴 ↔ (𝐴 / 𝑀) ∈ ℤ)) |
26 | 20, 25 | mpbird 256 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∥ 𝐴) |
27 | dvdssq 16200 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀 ∥ 𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2))) | |
28 | 21, 13, 27 | syl2an2r 681 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝑀 ∥ 𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2))) |
29 | 26, 28 | mpbid 231 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝑀↑2) ∥ (𝐴↑2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 (class class class)co 7255 ℂcc 10800 0cc0 10802 + caddc 10805 − cmin 11135 / cdiv 11562 ℕcn 11903 2c2 11958 ℤcz 12249 mod cmo 13517 ↑cexp 13710 ∥ cdvds 15891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-gcd 16130 |
This theorem is referenced by: 4sqlem16 16589 2sqlem8a 26478 |
Copyright terms: Public domain | W3C validator |