MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem9 Structured version   Visualization version   GIF version

Theorem 4sqlem9 16575
Description: Lemma for 4sq 16593. (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2 (𝜑𝐴 ∈ ℤ)
4sqlem5.3 (𝜑𝑀 ∈ ℕ)
4sqlem5.4 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sqlem9.5 ((𝜑𝜓) → (𝐵↑2) = 0)
Assertion
Ref Expression
4sqlem9 ((𝜑𝜓) → (𝑀↑2) ∥ (𝐴↑2))

Proof of Theorem 4sqlem9
StepHypRef Expression
1 4sqlem9.5 . . . . . . . 8 ((𝜑𝜓) → (𝐵↑2) = 0)
2 4sqlem5.2 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℤ)
3 4sqlem5.3 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
4 4sqlem5.4 . . . . . . . . . . . . 13 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
52, 3, 44sqlem5 16571 . . . . . . . . . . . 12 (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))
65simpld 494 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℤ)
76zcnd 12356 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
8 sqeq0 13768 . . . . . . . . . 10 (𝐵 ∈ ℂ → ((𝐵↑2) = 0 ↔ 𝐵 = 0))
97, 8syl 17 . . . . . . . . 9 (𝜑 → ((𝐵↑2) = 0 ↔ 𝐵 = 0))
109biimpa 476 . . . . . . . 8 ((𝜑 ∧ (𝐵↑2) = 0) → 𝐵 = 0)
111, 10syldan 590 . . . . . . 7 ((𝜑𝜓) → 𝐵 = 0)
1211oveq2d 7271 . . . . . 6 ((𝜑𝜓) → (𝐴𝐵) = (𝐴 − 0))
132adantr 480 . . . . . . . 8 ((𝜑𝜓) → 𝐴 ∈ ℤ)
1413zcnd 12356 . . . . . . 7 ((𝜑𝜓) → 𝐴 ∈ ℂ)
1514subid1d 11251 . . . . . 6 ((𝜑𝜓) → (𝐴 − 0) = 𝐴)
1612, 15eqtrd 2778 . . . . 5 ((𝜑𝜓) → (𝐴𝐵) = 𝐴)
1716oveq1d 7270 . . . 4 ((𝜑𝜓) → ((𝐴𝐵) / 𝑀) = (𝐴 / 𝑀))
185simprd 495 . . . . 5 (𝜑 → ((𝐴𝐵) / 𝑀) ∈ ℤ)
1918adantr 480 . . . 4 ((𝜑𝜓) → ((𝐴𝐵) / 𝑀) ∈ ℤ)
2017, 19eqeltrrd 2840 . . 3 ((𝜑𝜓) → (𝐴 / 𝑀) ∈ ℤ)
213nnzd 12354 . . . . 5 (𝜑𝑀 ∈ ℤ)
223nnne0d 11953 . . . . 5 (𝜑𝑀 ≠ 0)
23 dvdsval2 15894 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝐴 ∈ ℤ) → (𝑀𝐴 ↔ (𝐴 / 𝑀) ∈ ℤ))
2421, 22, 2, 23syl3anc 1369 . . . 4 (𝜑 → (𝑀𝐴 ↔ (𝐴 / 𝑀) ∈ ℤ))
2524adantr 480 . . 3 ((𝜑𝜓) → (𝑀𝐴 ↔ (𝐴 / 𝑀) ∈ ℤ))
2620, 25mpbird 256 . 2 ((𝜑𝜓) → 𝑀𝐴)
27 dvdssq 16200 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2)))
2821, 13, 27syl2an2r 681 . 2 ((𝜑𝜓) → (𝑀𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2)))
2926, 28mpbid 231 1 ((𝜑𝜓) → (𝑀↑2) ∥ (𝐴↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  (class class class)co 7255  cc 10800  0cc0 10802   + caddc 10805  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  cz 12249   mod cmo 13517  cexp 13710  cdvds 15891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130
This theorem is referenced by:  4sqlem16  16589  2sqlem8a  26478
  Copyright terms: Public domain W3C validator