MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abslem2 Structured version   Visualization version   GIF version

Theorem abslem2 15247
Description: Lemma involving absolute values. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
abslem2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((∗‘(𝐴 / (abs‘𝐴))) · 𝐴) + ((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = (2 · (abs‘𝐴)))

Proof of Theorem abslem2
StepHypRef Expression
1 absvalsq 15187 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
21adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
3 abscl 15185 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
43adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
54recnd 11140 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ)
65sqvald 14050 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑2) = ((abs‘𝐴) · (abs‘𝐴)))
72, 6eqtr3d 2768 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 · (∗‘𝐴)) = ((abs‘𝐴) · (abs‘𝐴)))
87oveq1d 7361 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 · (∗‘𝐴)) / (abs‘𝐴)) = (((abs‘𝐴) · (abs‘𝐴)) / (abs‘𝐴)))
9 simpl 482 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
109cjcld 15103 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘𝐴) ∈ ℂ)
11 abs00 15196 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
1211necon3bid 2972 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
1312biimpar 477 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ≠ 0)
149, 10, 5, 13div23d 11934 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 · (∗‘𝐴)) / (abs‘𝐴)) = ((𝐴 / (abs‘𝐴)) · (∗‘𝐴)))
155, 5, 13divcan3d 11902 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((abs‘𝐴) · (abs‘𝐴)) / (abs‘𝐴)) = (abs‘𝐴))
168, 14, 153eqtr3d 2774 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 / (abs‘𝐴)) · (∗‘𝐴)) = (abs‘𝐴))
1716fveq2d 6826 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = (∗‘(abs‘𝐴)))
189, 5, 13divcld 11897 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 / (abs‘𝐴)) ∈ ℂ)
1918, 10cjmuld 15128 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = ((∗‘(𝐴 / (abs‘𝐴))) · (∗‘(∗‘𝐴))))
209cjcjd 15106 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘(∗‘𝐴)) = 𝐴)
2120oveq2d 7362 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((∗‘(𝐴 / (abs‘𝐴))) · (∗‘(∗‘𝐴))) = ((∗‘(𝐴 / (abs‘𝐴))) · 𝐴))
2219, 21eqtrd 2766 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = ((∗‘(𝐴 / (abs‘𝐴))) · 𝐴))
234cjred 15133 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘(abs‘𝐴)) = (abs‘𝐴))
2417, 22, 233eqtr3d 2774 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((∗‘(𝐴 / (abs‘𝐴))) · 𝐴) = (abs‘𝐴))
2524, 16oveq12d 7364 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((∗‘(𝐴 / (abs‘𝐴))) · 𝐴) + ((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = ((abs‘𝐴) + (abs‘𝐴)))
2652timesd 12364 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (2 · (abs‘𝐴)) = ((abs‘𝐴) + (abs‘𝐴)))
2725, 26eqtr4d 2769 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((∗‘(𝐴 / (abs‘𝐴))) · 𝐴) + ((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = (2 · (abs‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006   + caddc 11009   · cmul 11011   / cdiv 11774  2c2 12180  cexp 13968  ccj 15003  abscabs 15141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143
This theorem is referenced by:  bcsiALT  31159
  Copyright terms: Public domain W3C validator