| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abslem2 | Structured version Visualization version GIF version | ||
| Description: Lemma involving absolute values. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| abslem2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((∗‘(𝐴 / (abs‘𝐴))) · 𝐴) + ((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = (2 · (abs‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | absvalsq 15302 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴))) | |
| 2 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴))) |
| 3 | abscl 15300 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
| 4 | 3 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ) |
| 5 | 4 | recnd 11271 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ) |
| 6 | 5 | sqvald 14166 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑2) = ((abs‘𝐴) · (abs‘𝐴))) |
| 7 | 2, 6 | eqtr3d 2771 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 · (∗‘𝐴)) = ((abs‘𝐴) · (abs‘𝐴))) |
| 8 | 7 | oveq1d 7428 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 · (∗‘𝐴)) / (abs‘𝐴)) = (((abs‘𝐴) · (abs‘𝐴)) / (abs‘𝐴))) |
| 9 | simpl 482 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ) | |
| 10 | 9 | cjcld 15218 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘𝐴) ∈ ℂ) |
| 11 | abs00 15311 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴) = 0 ↔ 𝐴 = 0)) | |
| 12 | 11 | necon3bid 2975 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0)) |
| 13 | 12 | biimpar 477 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ≠ 0) |
| 14 | 9, 10, 5, 13 | div23d 12062 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 · (∗‘𝐴)) / (abs‘𝐴)) = ((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) |
| 15 | 5, 5, 13 | divcan3d 12030 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((abs‘𝐴) · (abs‘𝐴)) / (abs‘𝐴)) = (abs‘𝐴)) |
| 16 | 8, 14, 15 | 3eqtr3d 2777 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 / (abs‘𝐴)) · (∗‘𝐴)) = (abs‘𝐴)) |
| 17 | 16 | fveq2d 6890 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = (∗‘(abs‘𝐴))) |
| 18 | 9, 5, 13 | divcld 12025 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 / (abs‘𝐴)) ∈ ℂ) |
| 19 | 18, 10 | cjmuld 15243 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = ((∗‘(𝐴 / (abs‘𝐴))) · (∗‘(∗‘𝐴)))) |
| 20 | 9 | cjcjd 15221 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘(∗‘𝐴)) = 𝐴) |
| 21 | 20 | oveq2d 7429 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((∗‘(𝐴 / (abs‘𝐴))) · (∗‘(∗‘𝐴))) = ((∗‘(𝐴 / (abs‘𝐴))) · 𝐴)) |
| 22 | 19, 21 | eqtrd 2769 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = ((∗‘(𝐴 / (abs‘𝐴))) · 𝐴)) |
| 23 | 4 | cjred 15248 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘(abs‘𝐴)) = (abs‘𝐴)) |
| 24 | 17, 22, 23 | 3eqtr3d 2777 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((∗‘(𝐴 / (abs‘𝐴))) · 𝐴) = (abs‘𝐴)) |
| 25 | 24, 16 | oveq12d 7431 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((∗‘(𝐴 / (abs‘𝐴))) · 𝐴) + ((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = ((abs‘𝐴) + (abs‘𝐴))) |
| 26 | 5 | 2timesd 12492 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (2 · (abs‘𝐴)) = ((abs‘𝐴) + (abs‘𝐴))) |
| 27 | 25, 26 | eqtr4d 2772 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((∗‘(𝐴 / (abs‘𝐴))) · 𝐴) + ((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = (2 · (abs‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ‘cfv 6541 (class class class)co 7413 ℂcc 11135 ℝcr 11136 0cc0 11137 + caddc 11140 · cmul 11142 / cdiv 11902 2c2 12303 ↑cexp 14084 ∗ccj 15118 abscabs 15256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-sup 9464 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-z 12597 df-uz 12861 df-rp 13017 df-seq 14025 df-exp 14085 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 |
| This theorem is referenced by: bcsiALT 31127 |
| Copyright terms: Public domain | W3C validator |