Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abslem2 | Structured version Visualization version GIF version |
Description: Lemma involving absolute values. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
abslem2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((∗‘(𝐴 / (abs‘𝐴))) · 𝐴) + ((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = (2 · (abs‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absvalsq 14980 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴))) | |
2 | 1 | adantr 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴))) |
3 | abscl 14978 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
4 | 3 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ) |
5 | 4 | recnd 10991 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ) |
6 | 5 | sqvald 13849 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑2) = ((abs‘𝐴) · (abs‘𝐴))) |
7 | 2, 6 | eqtr3d 2780 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 · (∗‘𝐴)) = ((abs‘𝐴) · (abs‘𝐴))) |
8 | 7 | oveq1d 7283 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 · (∗‘𝐴)) / (abs‘𝐴)) = (((abs‘𝐴) · (abs‘𝐴)) / (abs‘𝐴))) |
9 | simpl 483 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ) | |
10 | 9 | cjcld 14895 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘𝐴) ∈ ℂ) |
11 | abs00 14989 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴) = 0 ↔ 𝐴 = 0)) | |
12 | 11 | necon3bid 2988 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0)) |
13 | 12 | biimpar 478 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ≠ 0) |
14 | 9, 10, 5, 13 | div23d 11776 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 · (∗‘𝐴)) / (abs‘𝐴)) = ((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) |
15 | 5, 5, 13 | divcan3d 11744 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((abs‘𝐴) · (abs‘𝐴)) / (abs‘𝐴)) = (abs‘𝐴)) |
16 | 8, 14, 15 | 3eqtr3d 2786 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 / (abs‘𝐴)) · (∗‘𝐴)) = (abs‘𝐴)) |
17 | 16 | fveq2d 6771 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = (∗‘(abs‘𝐴))) |
18 | 9, 5, 13 | divcld 11739 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 / (abs‘𝐴)) ∈ ℂ) |
19 | 18, 10 | cjmuld 14920 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = ((∗‘(𝐴 / (abs‘𝐴))) · (∗‘(∗‘𝐴)))) |
20 | 9 | cjcjd 14898 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘(∗‘𝐴)) = 𝐴) |
21 | 20 | oveq2d 7284 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((∗‘(𝐴 / (abs‘𝐴))) · (∗‘(∗‘𝐴))) = ((∗‘(𝐴 / (abs‘𝐴))) · 𝐴)) |
22 | 19, 21 | eqtrd 2778 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = ((∗‘(𝐴 / (abs‘𝐴))) · 𝐴)) |
23 | 4 | cjred 14925 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘(abs‘𝐴)) = (abs‘𝐴)) |
24 | 17, 22, 23 | 3eqtr3d 2786 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((∗‘(𝐴 / (abs‘𝐴))) · 𝐴) = (abs‘𝐴)) |
25 | 24, 16 | oveq12d 7286 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((∗‘(𝐴 / (abs‘𝐴))) · 𝐴) + ((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = ((abs‘𝐴) + (abs‘𝐴))) |
26 | 5 | 2timesd 12204 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (2 · (abs‘𝐴)) = ((abs‘𝐴) + (abs‘𝐴))) |
27 | 25, 26 | eqtr4d 2781 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((∗‘(𝐴 / (abs‘𝐴))) · 𝐴) + ((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = (2 · (abs‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ‘cfv 6427 (class class class)co 7268 ℂcc 10857 ℝcr 10858 0cc0 10859 + caddc 10862 · cmul 10864 / cdiv 11620 2c2 12016 ↑cexp 13770 ∗ccj 14795 abscabs 14933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 ax-pre-sup 10937 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7704 df-2nd 7822 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-er 8486 df-en 8722 df-dom 8723 df-sdom 8724 df-sup 9189 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-div 11621 df-nn 11962 df-2 12024 df-3 12025 df-n0 12222 df-z 12308 df-uz 12571 df-rp 12719 df-seq 13710 df-exp 13771 df-cj 14798 df-re 14799 df-im 14800 df-sqrt 14934 df-abs 14935 |
This theorem is referenced by: bcsiALT 29527 |
Copyright terms: Public domain | W3C validator |