MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abslem2 Structured version   Visualization version   GIF version

Theorem abslem2 14979
Description: Lemma involving absolute values. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
abslem2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((∗‘(𝐴 / (abs‘𝐴))) · 𝐴) + ((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = (2 · (abs‘𝐴)))

Proof of Theorem abslem2
StepHypRef Expression
1 absvalsq 14920 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
21adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
3 abscl 14918 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
43adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
54recnd 10934 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ)
65sqvald 13789 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑2) = ((abs‘𝐴) · (abs‘𝐴)))
72, 6eqtr3d 2780 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 · (∗‘𝐴)) = ((abs‘𝐴) · (abs‘𝐴)))
87oveq1d 7270 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 · (∗‘𝐴)) / (abs‘𝐴)) = (((abs‘𝐴) · (abs‘𝐴)) / (abs‘𝐴)))
9 simpl 482 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
109cjcld 14835 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘𝐴) ∈ ℂ)
11 abs00 14929 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
1211necon3bid 2987 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
1312biimpar 477 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ≠ 0)
149, 10, 5, 13div23d 11718 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 · (∗‘𝐴)) / (abs‘𝐴)) = ((𝐴 / (abs‘𝐴)) · (∗‘𝐴)))
155, 5, 13divcan3d 11686 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((abs‘𝐴) · (abs‘𝐴)) / (abs‘𝐴)) = (abs‘𝐴))
168, 14, 153eqtr3d 2786 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 / (abs‘𝐴)) · (∗‘𝐴)) = (abs‘𝐴))
1716fveq2d 6760 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = (∗‘(abs‘𝐴)))
189, 5, 13divcld 11681 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 / (abs‘𝐴)) ∈ ℂ)
1918, 10cjmuld 14860 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = ((∗‘(𝐴 / (abs‘𝐴))) · (∗‘(∗‘𝐴))))
209cjcjd 14838 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘(∗‘𝐴)) = 𝐴)
2120oveq2d 7271 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((∗‘(𝐴 / (abs‘𝐴))) · (∗‘(∗‘𝐴))) = ((∗‘(𝐴 / (abs‘𝐴))) · 𝐴))
2219, 21eqtrd 2778 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = ((∗‘(𝐴 / (abs‘𝐴))) · 𝐴))
234cjred 14865 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘(abs‘𝐴)) = (abs‘𝐴))
2417, 22, 233eqtr3d 2786 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((∗‘(𝐴 / (abs‘𝐴))) · 𝐴) = (abs‘𝐴))
2524, 16oveq12d 7273 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((∗‘(𝐴 / (abs‘𝐴))) · 𝐴) + ((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = ((abs‘𝐴) + (abs‘𝐴)))
2652timesd 12146 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (2 · (abs‘𝐴)) = ((abs‘𝐴) + (abs‘𝐴)))
2725, 26eqtr4d 2781 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((∗‘(𝐴 / (abs‘𝐴))) · 𝐴) + ((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = (2 · (abs‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802   + caddc 10805   · cmul 10807   / cdiv 11562  2c2 11958  cexp 13710  ccj 14735  abscabs 14873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875
This theorem is referenced by:  bcsiALT  29442
  Copyright terms: Public domain W3C validator