MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluzge2nn0 Structured version   Visualization version   GIF version

Theorem eluzge2nn0 11971
Description: If an integer is greater than or equal to 2, then it is a nonnegative integer. (Contributed by AV, 27-Aug-2018.) (Proof shortened by AV, 3-Nov-2018.)
Assertion
Ref Expression
eluzge2nn0 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)

Proof of Theorem eluzge2nn0
StepHypRef Expression
1 eluz2nn 11970 . 2 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
21nnnn0d 11640 1 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2157  cfv 6101  2c2 11368  0cn0 11580  cuz 11930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-n0 11581  df-z 11667  df-uz 11931
This theorem is referenced by:  bernneq3  13246  relexpuzrel  14133  oddge22np1  15409  isprm5  15752  dfphi2  15812  bposlem2  25362  dlwwlknondlwlknonf1olem1  27734  dlwwlknonclwlknonf1olem1OLD  27735  rmspecnonsq  38257  rmspecfund  38259  rmspecpos  38266  rmxypos  38299  jm3.1  38372  relexpaddss  38793  fmtnorec4  42243  fmtnoprmfac2lem1  42260  fmtnoprmfac2  42261  fmtnofac2lem  42262  fmtnofac2  42263  fmtnofac1  42264  lighneallem2  42305  lighneallem4a  42307  lighneallem4b  42308  blennngt2o2  43185  blengt1fldiv2p1  43186  digexp  43200  dignn0flhalf  43211  nn0sumshdiglemB  43213
  Copyright terms: Public domain W3C validator