MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eulerth Structured version   Visualization version   GIF version

Theorem eulerth 16817
Description: Euler's theorem, a generalization of Fermat's little theorem. If 𝐴 and 𝑁 are coprime, then 𝐴↑ϕ(𝑁)≡1 (mod 𝑁). This is Metamath 100 proof #10. Also called Euler-Fermat theorem, see theorem 5.17 in [ApostolNT] p. 113. (Contributed by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
eulerth ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁))

Proof of Theorem eulerth
Dummy variables 𝑓 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phicl 16803 . . . . . . . 8 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ)
21nnnn0d 12585 . . . . . . 7 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ0)
3 hashfz1 14382 . . . . . . 7 ((ϕ‘𝑁) ∈ ℕ0 → (♯‘(1...(ϕ‘𝑁))) = (ϕ‘𝑁))
42, 3syl 17 . . . . . 6 (𝑁 ∈ ℕ → (♯‘(1...(ϕ‘𝑁))) = (ϕ‘𝑁))
5 dfphi2 16808 . . . . . 6 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}))
64, 5eqtrd 2775 . . . . 5 (𝑁 ∈ ℕ → (♯‘(1...(ϕ‘𝑁))) = (♯‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}))
763ad2ant1 1132 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (♯‘(1...(ϕ‘𝑁))) = (♯‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}))
8 fzfi 14010 . . . . 5 (1...(ϕ‘𝑁)) ∈ Fin
9 fzofi 14012 . . . . . 6 (0..^𝑁) ∈ Fin
10 ssrab2 4090 . . . . . 6 {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ⊆ (0..^𝑁)
11 ssfi 9212 . . . . . 6 (((0..^𝑁) ∈ Fin ∧ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ⊆ (0..^𝑁)) → {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ∈ Fin)
129, 10, 11mp2an 692 . . . . 5 {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ∈ Fin
13 hashen 14383 . . . . 5 (((1...(ϕ‘𝑁)) ∈ Fin ∧ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ∈ Fin) → ((♯‘(1...(ϕ‘𝑁))) = (♯‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) ↔ (1...(ϕ‘𝑁)) ≈ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}))
148, 12, 13mp2an 692 . . . 4 ((♯‘(1...(ϕ‘𝑁))) = (♯‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) ↔ (1...(ϕ‘𝑁)) ≈ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})
157, 14sylib 218 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (1...(ϕ‘𝑁)) ≈ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})
16 bren 8994 . . 3 ((1...(ϕ‘𝑁)) ≈ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ↔ ∃𝑓 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})
1715, 16sylib 218 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ∃𝑓 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})
18 simpl 482 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
19 oveq1 7438 . . . . 5 (𝑘 = 𝑦 → (𝑘 gcd 𝑁) = (𝑦 gcd 𝑁))
2019eqeq1d 2737 . . . 4 (𝑘 = 𝑦 → ((𝑘 gcd 𝑁) = 1 ↔ (𝑦 gcd 𝑁) = 1))
2120cbvrabv 3444 . . 3 {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
22 eqid 2735 . . 3 (1...(ϕ‘𝑁)) = (1...(ϕ‘𝑁))
23 simpr 484 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) → 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})
24 fveq2 6907 . . . . . 6 (𝑘 = 𝑥 → (𝑓𝑘) = (𝑓𝑥))
2524oveq2d 7447 . . . . 5 (𝑘 = 𝑥 → (𝐴 · (𝑓𝑘)) = (𝐴 · (𝑓𝑥)))
2625oveq1d 7446 . . . 4 (𝑘 = 𝑥 → ((𝐴 · (𝑓𝑘)) mod 𝑁) = ((𝐴 · (𝑓𝑥)) mod 𝑁))
2726cbvmptv 5261 . . 3 (𝑘 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝑓𝑘)) mod 𝑁)) = (𝑥 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝑓𝑥)) mod 𝑁))
2818, 21, 22, 23, 27eulerthlem2 16816 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁))
2917, 28exlimddv 1933 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  {crab 3433  wss 3963   class class class wbr 5148  cmpt 5231  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  cen 8981  Fincfn 8984  0cc0 11153  1c1 11154   · cmul 11158  cn 12264  0cn0 12524  cz 12611  ...cfz 13544  ..^cfzo 13691   mod cmo 13906  cexp 14099  chash 14366   gcd cgcd 16528  ϕcphi 16798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-phi 16800
This theorem is referenced by:  fermltl  16818  prmdiv  16819  odzcllem  16826  odzphi  16830  vfermltl  16835  lgslem1  27356  lgsqrlem2  27406
  Copyright terms: Public domain W3C validator