MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eulerth Structured version   Visualization version   GIF version

Theorem eulerth 16830
Description: Euler's theorem, a generalization of Fermat's little theorem. If 𝐴 and 𝑁 are coprime, then 𝐴↑ϕ(𝑁)≡1 (mod 𝑁). This is Metamath 100 proof #10. Also called Euler-Fermat theorem, see theorem 5.17 in [ApostolNT] p. 113. (Contributed by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
eulerth ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁))

Proof of Theorem eulerth
Dummy variables 𝑓 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phicl 16816 . . . . . . . 8 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ)
21nnnn0d 12613 . . . . . . 7 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ0)
3 hashfz1 14395 . . . . . . 7 ((ϕ‘𝑁) ∈ ℕ0 → (♯‘(1...(ϕ‘𝑁))) = (ϕ‘𝑁))
42, 3syl 17 . . . . . 6 (𝑁 ∈ ℕ → (♯‘(1...(ϕ‘𝑁))) = (ϕ‘𝑁))
5 dfphi2 16821 . . . . . 6 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}))
64, 5eqtrd 2780 . . . . 5 (𝑁 ∈ ℕ → (♯‘(1...(ϕ‘𝑁))) = (♯‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}))
763ad2ant1 1133 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (♯‘(1...(ϕ‘𝑁))) = (♯‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}))
8 fzfi 14023 . . . . 5 (1...(ϕ‘𝑁)) ∈ Fin
9 fzofi 14025 . . . . . 6 (0..^𝑁) ∈ Fin
10 ssrab2 4103 . . . . . 6 {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ⊆ (0..^𝑁)
11 ssfi 9240 . . . . . 6 (((0..^𝑁) ∈ Fin ∧ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ⊆ (0..^𝑁)) → {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ∈ Fin)
129, 10, 11mp2an 691 . . . . 5 {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ∈ Fin
13 hashen 14396 . . . . 5 (((1...(ϕ‘𝑁)) ∈ Fin ∧ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ∈ Fin) → ((♯‘(1...(ϕ‘𝑁))) = (♯‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) ↔ (1...(ϕ‘𝑁)) ≈ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}))
148, 12, 13mp2an 691 . . . 4 ((♯‘(1...(ϕ‘𝑁))) = (♯‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) ↔ (1...(ϕ‘𝑁)) ≈ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})
157, 14sylib 218 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (1...(ϕ‘𝑁)) ≈ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})
16 bren 9013 . . 3 ((1...(ϕ‘𝑁)) ≈ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ↔ ∃𝑓 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})
1715, 16sylib 218 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ∃𝑓 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})
18 simpl 482 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
19 oveq1 7455 . . . . 5 (𝑘 = 𝑦 → (𝑘 gcd 𝑁) = (𝑦 gcd 𝑁))
2019eqeq1d 2742 . . . 4 (𝑘 = 𝑦 → ((𝑘 gcd 𝑁) = 1 ↔ (𝑦 gcd 𝑁) = 1))
2120cbvrabv 3454 . . 3 {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
22 eqid 2740 . . 3 (1...(ϕ‘𝑁)) = (1...(ϕ‘𝑁))
23 simpr 484 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) → 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})
24 fveq2 6920 . . . . . 6 (𝑘 = 𝑥 → (𝑓𝑘) = (𝑓𝑥))
2524oveq2d 7464 . . . . 5 (𝑘 = 𝑥 → (𝐴 · (𝑓𝑘)) = (𝐴 · (𝑓𝑥)))
2625oveq1d 7463 . . . 4 (𝑘 = 𝑥 → ((𝐴 · (𝑓𝑘)) mod 𝑁) = ((𝐴 · (𝑓𝑥)) mod 𝑁))
2726cbvmptv 5279 . . 3 (𝑘 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝑓𝑘)) mod 𝑁)) = (𝑥 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝑓𝑥)) mod 𝑁))
2818, 21, 22, 23, 27eulerthlem2 16829 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁))
2917, 28exlimddv 1934 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {crab 3443  wss 3976   class class class wbr 5166  cmpt 5249  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cen 9000  Fincfn 9003  0cc0 11184  1c1 11185   · cmul 11189  cn 12293  0cn0 12553  cz 12639  ...cfz 13567  ..^cfzo 13711   mod cmo 13920  cexp 14112  chash 14379   gcd cgcd 16540  ϕcphi 16811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-phi 16813
This theorem is referenced by:  fermltl  16831  prmdiv  16832  odzcllem  16839  odzphi  16843  vfermltl  16848  lgslem1  27359  lgsqrlem2  27409
  Copyright terms: Public domain W3C validator