MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcid Structured version   Visualization version   GIF version

Theorem catcid 18095
Description: The identity arrow in the category of categories is the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
catccatid.c 𝐶 = (CatCat‘𝑈)
catccatid.b 𝐵 = (Base‘𝐶)
catcid.o 1 = (Id‘𝐶)
catcid.i 𝐼 = (idfunc𝑋)
catcid.u (𝜑𝑈𝑉)
catcid.x (𝜑𝑋𝐵)
Assertion
Ref Expression
catcid (𝜑 → ( 1𝑋) = 𝐼)

Proof of Theorem catcid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 catcid.o . . . 4 1 = (Id‘𝐶)
2 catcid.u . . . . . 6 (𝜑𝑈𝑉)
3 catccatid.c . . . . . . 7 𝐶 = (CatCat‘𝑈)
4 catccatid.b . . . . . . 7 𝐵 = (Base‘𝐶)
53, 4catccatid 18094 . . . . . 6 (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝐵 ↦ (idfunc𝑥))))
62, 5syl 17 . . . . 5 (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝐵 ↦ (idfunc𝑥))))
76simprd 495 . . . 4 (𝜑 → (Id‘𝐶) = (𝑥𝐵 ↦ (idfunc𝑥)))
81, 7eqtrid 2780 . . 3 (𝜑1 = (𝑥𝐵 ↦ (idfunc𝑥)))
9 simpr 484 . . . 4 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
109fveq2d 6901 . . 3 ((𝜑𝑥 = 𝑋) → (idfunc𝑥) = (idfunc𝑋))
11 catcid.x . . 3 (𝜑𝑋𝐵)
12 fvexd 6912 . . 3 (𝜑 → (idfunc𝑋) ∈ V)
138, 10, 11, 12fvmptd 7012 . 2 (𝜑 → ( 1𝑋) = (idfunc𝑋))
14 catcid.i . 2 𝐼 = (idfunc𝑋)
1513, 14eqtr4di 2786 1 (𝜑 → ( 1𝑋) = 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  Vcvv 3471  cmpt 5231  cfv 6548  Basecbs 17179  Catccat 17643  Idccid 17644  idfunccidfu 17840  CatCatccatc 18086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-er 8724  df-map 8846  df-ixp 8916  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-fz 13517  df-struct 17115  df-slot 17150  df-ndx 17162  df-base 17180  df-hom 17256  df-cco 17257  df-cat 17647  df-cid 17648  df-func 17843  df-idfu 17844  df-cofu 17845  df-catc 18087
This theorem is referenced by:  catcisolem  18098  catciso  18099
  Copyright terms: Public domain W3C validator