Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climmulf | Structured version Visualization version GIF version |
Description: A version of climmul 15030 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
climmulf.1 | ⊢ Ⅎ𝑘𝜑 |
climmulf.2 | ⊢ Ⅎ𝑘𝐹 |
climmulf.3 | ⊢ Ⅎ𝑘𝐺 |
climmulf.4 | ⊢ Ⅎ𝑘𝐻 |
climmulf.5 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climmulf.6 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climmulf.7 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climmulf.8 | ⊢ (𝜑 → 𝐻 ∈ 𝑋) |
climmulf.9 | ⊢ (𝜑 → 𝐺 ⇝ 𝐵) |
climmulf.10 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
climmulf.11 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
climmulf.12 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘))) |
Ref | Expression |
---|---|
climmulf | ⊢ (𝜑 → 𝐻 ⇝ (𝐴 · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climmulf.5 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climmulf.6 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climmulf.7 | . 2 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
4 | climmulf.8 | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝑋) | |
5 | climmulf.9 | . 2 ⊢ (𝜑 → 𝐺 ⇝ 𝐵) | |
6 | climmulf.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
7 | nfcv 2920 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
8 | 7 | nfel1 2936 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 |
9 | 6, 8 | nfan 1901 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
10 | climmulf.2 | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
11 | 10, 7 | nffv 6669 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
12 | 11 | nfel1 2936 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑗) ∈ ℂ |
13 | 9, 12 | nfim 1898 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℂ) |
14 | eleq1w 2835 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
15 | 14 | anbi2d 632 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
16 | fveq2 6659 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
17 | 16 | eleq1d 2837 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑗) ∈ ℂ)) |
18 | 15, 17 | imbi12d 349 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℂ))) |
19 | climmulf.10 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
20 | 13, 18, 19 | chvarfv 2241 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℂ) |
21 | climmulf.3 | . . . . . 6 ⊢ Ⅎ𝑘𝐺 | |
22 | 21, 7 | nffv 6669 | . . . . 5 ⊢ Ⅎ𝑘(𝐺‘𝑗) |
23 | 22 | nfel1 2936 | . . . 4 ⊢ Ⅎ𝑘(𝐺‘𝑗) ∈ ℂ |
24 | 9, 23 | nfim 1898 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ ℂ) |
25 | fveq2 6659 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐺‘𝑘) = (𝐺‘𝑗)) | |
26 | 25 | eleq1d 2837 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐺‘𝑘) ∈ ℂ ↔ (𝐺‘𝑗) ∈ ℂ)) |
27 | 15, 26 | imbi12d 349 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ ℂ))) |
28 | climmulf.11 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) | |
29 | 24, 27, 28 | chvarfv 2241 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ ℂ) |
30 | climmulf.4 | . . . . . 6 ⊢ Ⅎ𝑘𝐻 | |
31 | 30, 7 | nffv 6669 | . . . . 5 ⊢ Ⅎ𝑘(𝐻‘𝑗) |
32 | nfcv 2920 | . . . . . 6 ⊢ Ⅎ𝑘 · | |
33 | 11, 32, 22 | nfov 7181 | . . . . 5 ⊢ Ⅎ𝑘((𝐹‘𝑗) · (𝐺‘𝑗)) |
34 | 31, 33 | nfeq 2933 | . . . 4 ⊢ Ⅎ𝑘(𝐻‘𝑗) = ((𝐹‘𝑗) · (𝐺‘𝑗)) |
35 | 9, 34 | nfim 1898 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗) · (𝐺‘𝑗))) |
36 | fveq2 6659 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐻‘𝑘) = (𝐻‘𝑗)) | |
37 | 16, 25 | oveq12d 7169 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) · (𝐺‘𝑘)) = ((𝐹‘𝑗) · (𝐺‘𝑗))) |
38 | 36, 37 | eqeq12d 2775 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘)) ↔ (𝐻‘𝑗) = ((𝐹‘𝑗) · (𝐺‘𝑗)))) |
39 | 15, 38 | imbi12d 349 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘))) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗) · (𝐺‘𝑗))))) |
40 | climmulf.12 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘))) | |
41 | 35, 39, 40 | chvarfv 2241 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗) · (𝐺‘𝑗))) |
42 | 1, 2, 3, 4, 5, 20, 29, 41 | climmul 15030 | 1 ⊢ (𝜑 → 𝐻 ⇝ (𝐴 · 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2112 Ⅎwnfc 2900 class class class wbr 5033 ‘cfv 6336 (class class class)co 7151 ℂcc 10566 · cmul 10573 ℤcz 12013 ℤ≥cuz 12275 ⇝ cli 14882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 ax-pre-sup 10646 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-sup 8932 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-div 11329 df-nn 11668 df-2 11730 df-3 11731 df-n0 11928 df-z 12014 df-uz 12276 df-rp 12424 df-seq 13412 df-exp 13473 df-cj 14499 df-re 14500 df-im 14501 df-sqrt 14635 df-abs 14636 df-clim 14886 |
This theorem is referenced by: climneg 42611 climdivf 42613 stirlinglem15 43089 etransclem48 43283 |
Copyright terms: Public domain | W3C validator |