Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climmulf | Structured version Visualization version GIF version |
Description: A version of climmul 15442 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
climmulf.1 | ⊢ Ⅎ𝑘𝜑 |
climmulf.2 | ⊢ Ⅎ𝑘𝐹 |
climmulf.3 | ⊢ Ⅎ𝑘𝐺 |
climmulf.4 | ⊢ Ⅎ𝑘𝐻 |
climmulf.5 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climmulf.6 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climmulf.7 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climmulf.8 | ⊢ (𝜑 → 𝐻 ∈ 𝑋) |
climmulf.9 | ⊢ (𝜑 → 𝐺 ⇝ 𝐵) |
climmulf.10 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
climmulf.11 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
climmulf.12 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘))) |
Ref | Expression |
---|---|
climmulf | ⊢ (𝜑 → 𝐻 ⇝ (𝐴 · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climmulf.5 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climmulf.6 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climmulf.7 | . 2 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
4 | climmulf.8 | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝑋) | |
5 | climmulf.9 | . 2 ⊢ (𝜑 → 𝐺 ⇝ 𝐵) | |
6 | climmulf.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
7 | nfcv 2905 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
8 | 7 | nfel1 2921 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 |
9 | 6, 8 | nfan 1902 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
10 | climmulf.2 | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
11 | 10, 7 | nffv 6840 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
12 | 11 | nfel1 2921 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑗) ∈ ℂ |
13 | 9, 12 | nfim 1899 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℂ) |
14 | eleq1w 2820 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
15 | 14 | anbi2d 630 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
16 | fveq2 6830 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
17 | 16 | eleq1d 2822 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑗) ∈ ℂ)) |
18 | 15, 17 | imbi12d 345 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℂ))) |
19 | climmulf.10 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
20 | 13, 18, 19 | chvarfv 2233 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℂ) |
21 | climmulf.3 | . . . . . 6 ⊢ Ⅎ𝑘𝐺 | |
22 | 21, 7 | nffv 6840 | . . . . 5 ⊢ Ⅎ𝑘(𝐺‘𝑗) |
23 | 22 | nfel1 2921 | . . . 4 ⊢ Ⅎ𝑘(𝐺‘𝑗) ∈ ℂ |
24 | 9, 23 | nfim 1899 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ ℂ) |
25 | fveq2 6830 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐺‘𝑘) = (𝐺‘𝑗)) | |
26 | 25 | eleq1d 2822 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐺‘𝑘) ∈ ℂ ↔ (𝐺‘𝑗) ∈ ℂ)) |
27 | 15, 26 | imbi12d 345 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ ℂ))) |
28 | climmulf.11 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) | |
29 | 24, 27, 28 | chvarfv 2233 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ ℂ) |
30 | climmulf.4 | . . . . . 6 ⊢ Ⅎ𝑘𝐻 | |
31 | 30, 7 | nffv 6840 | . . . . 5 ⊢ Ⅎ𝑘(𝐻‘𝑗) |
32 | nfcv 2905 | . . . . . 6 ⊢ Ⅎ𝑘 · | |
33 | 11, 32, 22 | nfov 7372 | . . . . 5 ⊢ Ⅎ𝑘((𝐹‘𝑗) · (𝐺‘𝑗)) |
34 | 31, 33 | nfeq 2918 | . . . 4 ⊢ Ⅎ𝑘(𝐻‘𝑗) = ((𝐹‘𝑗) · (𝐺‘𝑗)) |
35 | 9, 34 | nfim 1899 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗) · (𝐺‘𝑗))) |
36 | fveq2 6830 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐻‘𝑘) = (𝐻‘𝑗)) | |
37 | 16, 25 | oveq12d 7360 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) · (𝐺‘𝑘)) = ((𝐹‘𝑗) · (𝐺‘𝑗))) |
38 | 36, 37 | eqeq12d 2753 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘)) ↔ (𝐻‘𝑗) = ((𝐹‘𝑗) · (𝐺‘𝑗)))) |
39 | 15, 38 | imbi12d 345 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘))) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗) · (𝐺‘𝑗))))) |
40 | climmulf.12 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘))) | |
41 | 35, 39, 40 | chvarfv 2233 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗) · (𝐺‘𝑗))) |
42 | 1, 2, 3, 4, 5, 20, 29, 41 | climmul 15442 | 1 ⊢ (𝜑 → 𝐻 ⇝ (𝐴 · 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 Ⅎwnfc 2885 class class class wbr 5097 ‘cfv 6484 (class class class)co 7342 ℂcc 10975 · cmul 10982 ℤcz 12425 ℤ≥cuz 12688 ⇝ cli 15293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 ax-pre-sup 11055 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-sup 9304 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-div 11739 df-nn 12080 df-2 12142 df-3 12143 df-n0 12340 df-z 12426 df-uz 12689 df-rp 12837 df-seq 13828 df-exp 13889 df-cj 14910 df-re 14911 df-im 14912 df-sqrt 15046 df-abs 15047 df-clim 15297 |
This theorem is referenced by: climneg 43537 climdivf 43539 stirlinglem15 44015 etransclem48 44209 |
Copyright terms: Public domain | W3C validator |