Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climmulf Structured version   Visualization version   GIF version

Theorem climmulf 45586
Description: A version of climmul 15558 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climmulf.1 𝑘𝜑
climmulf.2 𝑘𝐹
climmulf.3 𝑘𝐺
climmulf.4 𝑘𝐻
climmulf.5 𝑍 = (ℤ𝑀)
climmulf.6 (𝜑𝑀 ∈ ℤ)
climmulf.7 (𝜑𝐹𝐴)
climmulf.8 (𝜑𝐻𝑋)
climmulf.9 (𝜑𝐺𝐵)
climmulf.10 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climmulf.11 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
climmulf.12 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
Assertion
Ref Expression
climmulf (𝜑𝐻 ⇝ (𝐴 · 𝐵))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝑀(𝑘)   𝑋(𝑘)

Proof of Theorem climmulf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climmulf.5 . 2 𝑍 = (ℤ𝑀)
2 climmulf.6 . 2 (𝜑𝑀 ∈ ℤ)
3 climmulf.7 . 2 (𝜑𝐹𝐴)
4 climmulf.8 . 2 (𝜑𝐻𝑋)
5 climmulf.9 . 2 (𝜑𝐺𝐵)
6 climmulf.1 . . . . 5 𝑘𝜑
7 nfcv 2891 . . . . . 6 𝑘𝑗
87nfel1 2908 . . . . 5 𝑘 𝑗𝑍
96, 8nfan 1899 . . . 4 𝑘(𝜑𝑗𝑍)
10 climmulf.2 . . . . . 6 𝑘𝐹
1110, 7nffv 6836 . . . . 5 𝑘(𝐹𝑗)
1211nfel1 2908 . . . 4 𝑘(𝐹𝑗) ∈ ℂ
139, 12nfim 1896 . . 3 𝑘((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)
14 eleq1w 2811 . . . . 5 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1514anbi2d 630 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
16 fveq2 6826 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1716eleq1d 2813 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
1815, 17imbi12d 344 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ) ↔ ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)))
19 climmulf.10 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2013, 18, 19chvarfv 2241 . 2 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)
21 climmulf.3 . . . . . 6 𝑘𝐺
2221, 7nffv 6836 . . . . 5 𝑘(𝐺𝑗)
2322nfel1 2908 . . . 4 𝑘(𝐺𝑗) ∈ ℂ
249, 23nfim 1896 . . 3 𝑘((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)
25 fveq2 6826 . . . . 5 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
2625eleq1d 2813 . . . 4 (𝑘 = 𝑗 → ((𝐺𝑘) ∈ ℂ ↔ (𝐺𝑗) ∈ ℂ))
2715, 26imbi12d 344 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ) ↔ ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)))
28 climmulf.11 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
2924, 27, 28chvarfv 2241 . 2 ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)
30 climmulf.4 . . . . . 6 𝑘𝐻
3130, 7nffv 6836 . . . . 5 𝑘(𝐻𝑗)
32 nfcv 2891 . . . . . 6 𝑘 ·
3311, 32, 22nfov 7383 . . . . 5 𝑘((𝐹𝑗) · (𝐺𝑗))
3431, 33nfeq 2905 . . . 4 𝑘(𝐻𝑗) = ((𝐹𝑗) · (𝐺𝑗))
359, 34nfim 1896 . . 3 𝑘((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) · (𝐺𝑗)))
36 fveq2 6826 . . . . 5 (𝑘 = 𝑗 → (𝐻𝑘) = (𝐻𝑗))
3716, 25oveq12d 7371 . . . . 5 (𝑘 = 𝑗 → ((𝐹𝑘) · (𝐺𝑘)) = ((𝐹𝑗) · (𝐺𝑗)))
3836, 37eqeq12d 2745 . . . 4 (𝑘 = 𝑗 → ((𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)) ↔ (𝐻𝑗) = ((𝐹𝑗) · (𝐺𝑗))))
3915, 38imbi12d 344 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘))) ↔ ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) · (𝐺𝑗)))))
40 climmulf.12 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
4135, 39, 40chvarfv 2241 . 2 ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) · (𝐺𝑗)))
421, 2, 3, 4, 5, 20, 29, 41climmul 15558 1 (𝜑𝐻 ⇝ (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876   class class class wbr 5095  cfv 6486  (class class class)co 7353  cc 11026   · cmul 11033  cz 12489  cuz 12753  cli 15409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413
This theorem is referenced by:  climneg  45592  climdivf  45594  stirlinglem15  46070  etransclem48  46264
  Copyright terms: Public domain W3C validator