Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climmulf Structured version   Visualization version   GIF version

Theorem climmulf 41761
Description: A version of climmul 14977 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climmulf.1 𝑘𝜑
climmulf.2 𝑘𝐹
climmulf.3 𝑘𝐺
climmulf.4 𝑘𝐻
climmulf.5 𝑍 = (ℤ𝑀)
climmulf.6 (𝜑𝑀 ∈ ℤ)
climmulf.7 (𝜑𝐹𝐴)
climmulf.8 (𝜑𝐻𝑋)
climmulf.9 (𝜑𝐺𝐵)
climmulf.10 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climmulf.11 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
climmulf.12 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
Assertion
Ref Expression
climmulf (𝜑𝐻 ⇝ (𝐴 · 𝐵))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝑀(𝑘)   𝑋(𝑘)

Proof of Theorem climmulf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climmulf.5 . 2 𝑍 = (ℤ𝑀)
2 climmulf.6 . 2 (𝜑𝑀 ∈ ℤ)
3 climmulf.7 . 2 (𝜑𝐹𝐴)
4 climmulf.8 . 2 (𝜑𝐻𝑋)
5 climmulf.9 . 2 (𝜑𝐺𝐵)
6 climmulf.1 . . . . 5 𝑘𝜑
7 nfcv 2974 . . . . . 6 𝑘𝑗
87nfel1 2991 . . . . 5 𝑘 𝑗𝑍
96, 8nfan 1891 . . . 4 𝑘(𝜑𝑗𝑍)
10 climmulf.2 . . . . . 6 𝑘𝐹
1110, 7nffv 6673 . . . . 5 𝑘(𝐹𝑗)
1211nfel1 2991 . . . 4 𝑘(𝐹𝑗) ∈ ℂ
139, 12nfim 1888 . . 3 𝑘((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)
14 eleq1w 2892 . . . . 5 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1514anbi2d 628 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
16 fveq2 6663 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1716eleq1d 2894 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
1815, 17imbi12d 346 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ) ↔ ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)))
19 climmulf.10 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2013, 18, 19chvarfv 2232 . 2 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)
21 climmulf.3 . . . . . 6 𝑘𝐺
2221, 7nffv 6673 . . . . 5 𝑘(𝐺𝑗)
2322nfel1 2991 . . . 4 𝑘(𝐺𝑗) ∈ ℂ
249, 23nfim 1888 . . 3 𝑘((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)
25 fveq2 6663 . . . . 5 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
2625eleq1d 2894 . . . 4 (𝑘 = 𝑗 → ((𝐺𝑘) ∈ ℂ ↔ (𝐺𝑗) ∈ ℂ))
2715, 26imbi12d 346 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ) ↔ ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)))
28 climmulf.11 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
2924, 27, 28chvarfv 2232 . 2 ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)
30 climmulf.4 . . . . . 6 𝑘𝐻
3130, 7nffv 6673 . . . . 5 𝑘(𝐻𝑗)
32 nfcv 2974 . . . . . 6 𝑘 ·
3311, 32, 22nfov 7175 . . . . 5 𝑘((𝐹𝑗) · (𝐺𝑗))
3431, 33nfeq 2988 . . . 4 𝑘(𝐻𝑗) = ((𝐹𝑗) · (𝐺𝑗))
359, 34nfim 1888 . . 3 𝑘((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) · (𝐺𝑗)))
36 fveq2 6663 . . . . 5 (𝑘 = 𝑗 → (𝐻𝑘) = (𝐻𝑗))
3716, 25oveq12d 7163 . . . . 5 (𝑘 = 𝑗 → ((𝐹𝑘) · (𝐺𝑘)) = ((𝐹𝑗) · (𝐺𝑗)))
3836, 37eqeq12d 2834 . . . 4 (𝑘 = 𝑗 → ((𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)) ↔ (𝐻𝑗) = ((𝐹𝑗) · (𝐺𝑗))))
3915, 38imbi12d 346 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘))) ↔ ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) · (𝐺𝑗)))))
40 climmulf.12 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
4135, 39, 40chvarfv 2232 . 2 ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) · (𝐺𝑗)))
421, 2, 3, 4, 5, 20, 29, 41climmul 14977 1 (𝜑𝐻 ⇝ (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wnf 1775  wcel 2105  wnfc 2958   class class class wbr 5057  cfv 6348  (class class class)co 7145  cc 10523   · cmul 10530  cz 11969  cuz 12231  cli 14829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833
This theorem is referenced by:  climneg  41767  climdivf  41769  stirlinglem15  42250  etransclem48  42444
  Copyright terms: Public domain W3C validator