| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwlkssizeeq | Structured version Visualization version GIF version | ||
| Description: The size of the set of closed walks as words of length 𝑁 corresponds to the size of the set of closed walks of length 𝑁 in a simple pseudograph. (Contributed by Alexander van der Vekens, 6-Jul-2018.) (Revised by AV, 4-May-2021.) (Revised by AV, 26-May-2022.) (Proof shortened by AV, 3-Nov-2022.) |
| Ref | Expression |
|---|---|
| clwlkssizeeq | ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (♯‘(𝑁 ClWWalksN 𝐺)) = (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑤)) = 𝑁})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6878 | . . . . 5 ⊢ (ClWalks‘𝐺) ∈ V | |
| 2 | 1 | rabex 5302 | . . . 4 ⊢ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑤)) = 𝑁} ∈ V |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑤)) = 𝑁} ∈ V) |
| 4 | eqid 2730 | . . . 4 ⊢ (1st ‘𝑐) = (1st ‘𝑐) | |
| 5 | eqid 2730 | . . . 4 ⊢ (2nd ‘𝑐) = (2nd ‘𝑐) | |
| 6 | eqid 2730 | . . . 4 ⊢ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑤)) = 𝑁} = {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑤)) = 𝑁} | |
| 7 | eqid 2730 | . . . 4 ⊢ (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑤)) = 𝑁} ↦ ((2nd ‘𝑐) prefix (♯‘(1st ‘𝑐)))) = (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑤)) = 𝑁} ↦ ((2nd ‘𝑐) prefix (♯‘(1st ‘𝑐)))) | |
| 8 | 4, 5, 6, 7 | clwlknf1oclwwlkn 30020 | . . 3 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑤)) = 𝑁} ↦ ((2nd ‘𝑐) prefix (♯‘(1st ‘𝑐)))):{𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑤)) = 𝑁}–1-1-onto→(𝑁 ClWWalksN 𝐺)) |
| 9 | 3, 8 | hasheqf1od 14328 | . 2 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑤)) = 𝑁}) = (♯‘(𝑁 ClWWalksN 𝐺))) |
| 10 | 9 | eqcomd 2736 | 1 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (♯‘(𝑁 ClWWalksN 𝐺)) = (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st ‘𝑤)) = 𝑁})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3411 Vcvv 3455 ↦ cmpt 5196 ‘cfv 6519 (class class class)co 7394 1st c1st 7975 2nd c2nd 7976 ℕcn 12197 ♯chash 14305 prefix cpfx 14645 USPGraphcuspgr 29082 ClWalkscclwlks 29707 ClWWalksN cclwwlkn 29960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-oadd 8447 df-er 8682 df-map 8805 df-pm 8806 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-dju 9872 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-n0 12459 df-xnn0 12532 df-z 12546 df-uz 12810 df-rp 12966 df-fz 13482 df-fzo 13629 df-hash 14306 df-word 14489 df-lsw 14538 df-concat 14546 df-s1 14571 df-substr 14616 df-pfx 14646 df-edg 28982 df-uhgr 28992 df-upgr 29016 df-uspgr 29084 df-wlks 29534 df-clwlks 29708 df-clwwlk 29918 df-clwwlkn 29961 |
| This theorem is referenced by: clwlksndivn 30022 |
| Copyright terms: Public domain | W3C validator |