Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diag2f1lem Structured version   Visualization version   GIF version

Theorem diag2f1lem 49297
Description: Lemma for diag2f1 49298. The converse is trivial (fveq2 6822). (Contributed by Zhi Wang, 21-Oct-2025.)
Hypotheses
Ref Expression
diag2f1.l 𝐿 = (𝐶Δfunc𝐷)
diag2f1.a 𝐴 = (Base‘𝐶)
diag2f1.b 𝐵 = (Base‘𝐷)
diag2f1.h 𝐻 = (Hom ‘𝐶)
diag2f1.c (𝜑𝐶 ∈ Cat)
diag2f1.d (𝜑𝐷 ∈ Cat)
diag2f1.x (𝜑𝑋𝐴)
diag2f1.y (𝜑𝑌𝐴)
diag2f1.0 (𝜑𝐵 ≠ ∅)
diag2f1lem.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
diag2f1lem.g (𝜑𝐺 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
diag2f1lem (𝜑 → (((𝑋(2nd𝐿)𝑌)‘𝐹) = ((𝑋(2nd𝐿)𝑌)‘𝐺) → 𝐹 = 𝐺))

Proof of Theorem diag2f1lem
StepHypRef Expression
1 diag2f1.l . . . . 5 𝐿 = (𝐶Δfunc𝐷)
2 diag2f1.a . . . . 5 𝐴 = (Base‘𝐶)
3 diag2f1.b . . . . 5 𝐵 = (Base‘𝐷)
4 diag2f1.h . . . . 5 𝐻 = (Hom ‘𝐶)
5 diag2f1.c . . . . 5 (𝜑𝐶 ∈ Cat)
6 diag2f1.d . . . . 5 (𝜑𝐷 ∈ Cat)
7 diag2f1.x . . . . 5 (𝜑𝑋𝐴)
8 diag2f1.y . . . . 5 (𝜑𝑌𝐴)
9 diag2f1lem.f . . . . 5 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
101, 2, 3, 4, 5, 6, 7, 8, 9diag2 18151 . . . 4 (𝜑 → ((𝑋(2nd𝐿)𝑌)‘𝐹) = (𝐵 × {𝐹}))
11 diag2f1lem.g . . . . 5 (𝜑𝐺 ∈ (𝑋𝐻𝑌))
121, 2, 3, 4, 5, 6, 7, 8, 11diag2 18151 . . . 4 (𝜑 → ((𝑋(2nd𝐿)𝑌)‘𝐺) = (𝐵 × {𝐺}))
1310, 12eqeq12d 2745 . . 3 (𝜑 → (((𝑋(2nd𝐿)𝑌)‘𝐹) = ((𝑋(2nd𝐿)𝑌)‘𝐺) ↔ (𝐵 × {𝐹}) = (𝐵 × {𝐺})))
14 diag2f1.0 . . . 4 (𝜑𝐵 ≠ ∅)
15 xpcan 6125 . . . 4 (𝐵 ≠ ∅ → ((𝐵 × {𝐹}) = (𝐵 × {𝐺}) ↔ {𝐹} = {𝐺}))
1614, 15syl 17 . . 3 (𝜑 → ((𝐵 × {𝐹}) = (𝐵 × {𝐺}) ↔ {𝐹} = {𝐺}))
1713, 16bitrd 279 . 2 (𝜑 → (((𝑋(2nd𝐿)𝑌)‘𝐹) = ((𝑋(2nd𝐿)𝑌)‘𝐺) ↔ {𝐹} = {𝐺}))
18 sneqrg 4790 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → ({𝐹} = {𝐺} → 𝐹 = 𝐺))
199, 18syl 17 . 2 (𝜑 → ({𝐹} = {𝐺} → 𝐹 = 𝐺))
2017, 19sylbid 240 1 (𝜑 → (((𝑋(2nd𝐿)𝑌)‘𝐹) = ((𝑋(2nd𝐿)𝑌)‘𝐺) → 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2925  c0 4284  {csn 4577   × cxp 5617  cfv 6482  (class class class)co 7349  2nd c2nd 7923  Basecbs 17120  Hom chom 17172  Catccat 17570  Δfunccdiag 18118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-hom 17185  df-cco 17186  df-cat 17574  df-cid 17575  df-func 17765  df-xpc 18078  df-1stf 18079  df-curf 18120  df-diag 18122
This theorem is referenced by:  diag2f1  49298
  Copyright terms: Public domain W3C validator