Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0dig2nn0e | Structured version Visualization version GIF version |
Description: The last bit of an even integer is 0. (Contributed by AV, 3-Jun-2010.) |
Ref | Expression |
---|---|
0dig2nn0e | ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 11976 | . . . 4 ⊢ 2 ∈ ℕ | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → 2 ∈ ℕ) |
3 | 0nn0 12178 | . . . 4 ⊢ 0 ∈ ℕ0 | |
4 | 3 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → 0 ∈ ℕ0) |
5 | nn0rp0 13116 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0[,)+∞)) | |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → 𝑁 ∈ (0[,)+∞)) |
7 | nn0digval 45834 | . . 3 ⊢ ((2 ∈ ℕ ∧ 0 ∈ ℕ0 ∧ 𝑁 ∈ (0[,)+∞)) → (0(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑0))) mod 2)) | |
8 | 2, 4, 6, 7 | syl3anc 1369 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑0))) mod 2)) |
9 | 2cn 11978 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
10 | exp0 13714 | . . . . . . . 8 ⊢ (2 ∈ ℂ → (2↑0) = 1) | |
11 | 9, 10 | mp1i 13 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (2↑0) = 1) |
12 | 11 | oveq2d 7271 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 / (2↑0)) = (𝑁 / 1)) |
13 | nn0cn 12173 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
14 | 13 | div1d 11673 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 / 1) = 𝑁) |
15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 / 1) = 𝑁) |
16 | 12, 15 | eqtrd 2778 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 / (2↑0)) = 𝑁) |
17 | 16 | fveq2d 6760 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (⌊‘(𝑁 / (2↑0))) = (⌊‘𝑁)) |
18 | 17 | oveq1d 7270 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ((⌊‘(𝑁 / (2↑0))) mod 2) = ((⌊‘𝑁) mod 2)) |
19 | nn0z 12273 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
20 | flid 13456 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁) | |
21 | 19, 20 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (⌊‘𝑁) = 𝑁) |
22 | 21 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (⌊‘𝑁) = 𝑁) |
23 | 22 | oveq1d 7270 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ((⌊‘𝑁) mod 2) = (𝑁 mod 2)) |
24 | nn0z 12273 | . . . . . 6 ⊢ ((𝑁 / 2) ∈ ℕ0 → (𝑁 / 2) ∈ ℤ) | |
25 | 24 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 / 2) ∈ ℤ) |
26 | nn0re 12172 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
27 | 26 | adantr 480 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → 𝑁 ∈ ℝ) |
28 | 2rp 12664 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
29 | mod0 13524 | . . . . . 6 ⊢ ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ+) → ((𝑁 mod 2) = 0 ↔ (𝑁 / 2) ∈ ℤ)) | |
30 | 27, 28, 29 | sylancl 585 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ((𝑁 mod 2) = 0 ↔ (𝑁 / 2) ∈ ℤ)) |
31 | 25, 30 | mpbird 256 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 mod 2) = 0) |
32 | 23, 31 | eqtrd 2778 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ((⌊‘𝑁) mod 2) = 0) |
33 | 18, 32 | eqtrd 2778 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ((⌊‘(𝑁 / (2↑0))) mod 2) = 0) |
34 | 8, 33 | eqtrd 2778 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 +∞cpnf 10937 / cdiv 11562 ℕcn 11903 2c2 11958 ℕ0cn0 12163 ℤcz 12249 ℝ+crp 12659 [,)cico 13010 ⌊cfl 13438 mod cmo 13517 ↑cexp 13710 digitcdig 45829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ico 13014 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-dig 45830 |
This theorem is referenced by: nn0sumshdiglemA 45853 |
Copyright terms: Public domain | W3C validator |