Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0dig2nn0e Structured version   Visualization version   GIF version

Theorem 0dig2nn0e 48617
Description: The last bit of an even integer is 0. (Contributed by AV, 3-Jun-2010.)
Assertion
Ref Expression
0dig2nn0e ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = 0)

Proof of Theorem 0dig2nn0e
StepHypRef Expression
1 2nn 12220 . . . 4 2 ∈ ℕ
21a1i 11 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → 2 ∈ ℕ)
3 0nn0 12418 . . . 4 0 ∈ ℕ0
43a1i 11 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → 0 ∈ ℕ0)
5 nn0rp0 13377 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ (0[,)+∞))
65adantr 480 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → 𝑁 ∈ (0[,)+∞))
7 nn0digval 48605 . . 3 ((2 ∈ ℕ ∧ 0 ∈ ℕ0𝑁 ∈ (0[,)+∞)) → (0(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑0))) mod 2))
82, 4, 6, 7syl3anc 1373 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑0))) mod 2))
9 2cn 12222 . . . . . . . 8 2 ∈ ℂ
10 exp0 13991 . . . . . . . 8 (2 ∈ ℂ → (2↑0) = 1)
119, 10mp1i 13 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (2↑0) = 1)
1211oveq2d 7369 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 / (2↑0)) = (𝑁 / 1))
13 nn0cn 12413 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
1413div1d 11911 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 / 1) = 𝑁)
1514adantr 480 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 / 1) = 𝑁)
1612, 15eqtrd 2764 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 / (2↑0)) = 𝑁)
1716fveq2d 6830 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (⌊‘(𝑁 / (2↑0))) = (⌊‘𝑁))
1817oveq1d 7368 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ((⌊‘(𝑁 / (2↑0))) mod 2) = ((⌊‘𝑁) mod 2))
19 nn0z 12515 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
20 flid 13731 . . . . . . 7 (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁)
2119, 20syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → (⌊‘𝑁) = 𝑁)
2221adantr 480 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (⌊‘𝑁) = 𝑁)
2322oveq1d 7368 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ((⌊‘𝑁) mod 2) = (𝑁 mod 2))
24 nn0z 12515 . . . . . 6 ((𝑁 / 2) ∈ ℕ0 → (𝑁 / 2) ∈ ℤ)
2524adantl 481 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 / 2) ∈ ℤ)
26 nn0re 12412 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2726adantr 480 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → 𝑁 ∈ ℝ)
28 2rp 12917 . . . . . 6 2 ∈ ℝ+
29 mod0 13799 . . . . . 6 ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ+) → ((𝑁 mod 2) = 0 ↔ (𝑁 / 2) ∈ ℤ))
3027, 28, 29sylancl 586 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ((𝑁 mod 2) = 0 ↔ (𝑁 / 2) ∈ ℤ))
3125, 30mpbird 257 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 mod 2) = 0)
3223, 31eqtrd 2764 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ((⌊‘𝑁) mod 2) = 0)
3318, 32eqtrd 2764 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ((⌊‘(𝑁 / (2↑0))) mod 2) = 0)
348, 33eqtrd 2764 1 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029  +∞cpnf 11165   / cdiv 11796  cn 12147  2c2 12202  0cn0 12403  cz 12490  +crp 12912  [,)cico 13269  cfl 13713   mod cmo 13792  cexp 13987  digitcdig 48600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-n0 12404  df-z 12491  df-uz 12755  df-rp 12913  df-ico 13273  df-fl 13715  df-mod 13793  df-seq 13928  df-exp 13988  df-dig 48601
This theorem is referenced by:  nn0sumshdiglemA  48624
  Copyright terms: Public domain W3C validator