Step | Hyp | Ref
| Expression |
1 | | 2nn 12289 |
. . . 4
β’ 2 β
β |
2 | 1 | a1i 11 |
. . 3
β’ ((π β β0
β§ (π / 2) β
β0) β 2 β β) |
3 | | 0nn0 12491 |
. . . 4
β’ 0 β
β0 |
4 | 3 | a1i 11 |
. . 3
β’ ((π β β0
β§ (π / 2) β
β0) β 0 β β0) |
5 | | nn0rp0 13436 |
. . . 4
β’ (π β β0
β π β
(0[,)+β)) |
6 | 5 | adantr 479 |
. . 3
β’ ((π β β0
β§ (π / 2) β
β0) β π β (0[,)+β)) |
7 | | nn0digval 47373 |
. . 3
β’ ((2
β β β§ 0 β β0 β§ π β (0[,)+β)) β
(0(digitβ2)π) =
((ββ(π /
(2β0))) mod 2)) |
8 | 2, 4, 6, 7 | syl3anc 1369 |
. 2
β’ ((π β β0
β§ (π / 2) β
β0) β (0(digitβ2)π) = ((ββ(π / (2β0))) mod 2)) |
9 | | 2cn 12291 |
. . . . . . . 8
β’ 2 β
β |
10 | | exp0 14035 |
. . . . . . . 8
β’ (2 β
β β (2β0) = 1) |
11 | 9, 10 | mp1i 13 |
. . . . . . 7
β’ ((π β β0
β§ (π / 2) β
β0) β (2β0) = 1) |
12 | 11 | oveq2d 7427 |
. . . . . 6
β’ ((π β β0
β§ (π / 2) β
β0) β (π / (2β0)) = (π / 1)) |
13 | | nn0cn 12486 |
. . . . . . . 8
β’ (π β β0
β π β
β) |
14 | 13 | div1d 11986 |
. . . . . . 7
β’ (π β β0
β (π / 1) = π) |
15 | 14 | adantr 479 |
. . . . . 6
β’ ((π β β0
β§ (π / 2) β
β0) β (π / 1) = π) |
16 | 12, 15 | eqtrd 2770 |
. . . . 5
β’ ((π β β0
β§ (π / 2) β
β0) β (π / (2β0)) = π) |
17 | 16 | fveq2d 6894 |
. . . 4
β’ ((π β β0
β§ (π / 2) β
β0) β (ββ(π / (2β0))) = (ββπ)) |
18 | 17 | oveq1d 7426 |
. . 3
β’ ((π β β0
β§ (π / 2) β
β0) β ((ββ(π / (2β0))) mod 2) =
((ββπ) mod
2)) |
19 | | nn0z 12587 |
. . . . . . 7
β’ (π β β0
β π β
β€) |
20 | | flid 13777 |
. . . . . . 7
β’ (π β β€ β
(ββπ) = π) |
21 | 19, 20 | syl 17 |
. . . . . 6
β’ (π β β0
β (ββπ) =
π) |
22 | 21 | adantr 479 |
. . . . 5
β’ ((π β β0
β§ (π / 2) β
β0) β (ββπ) = π) |
23 | 22 | oveq1d 7426 |
. . . 4
β’ ((π β β0
β§ (π / 2) β
β0) β ((ββπ) mod 2) = (π mod 2)) |
24 | | nn0z 12587 |
. . . . . 6
β’ ((π / 2) β β0
β (π / 2) β
β€) |
25 | 24 | adantl 480 |
. . . . 5
β’ ((π β β0
β§ (π / 2) β
β0) β (π / 2) β β€) |
26 | | nn0re 12485 |
. . . . . . 7
β’ (π β β0
β π β
β) |
27 | 26 | adantr 479 |
. . . . . 6
β’ ((π β β0
β§ (π / 2) β
β0) β π β β) |
28 | | 2rp 12983 |
. . . . . 6
β’ 2 β
β+ |
29 | | mod0 13845 |
. . . . . 6
β’ ((π β β β§ 2 β
β+) β ((π mod 2) = 0 β (π / 2) β β€)) |
30 | 27, 28, 29 | sylancl 584 |
. . . . 5
β’ ((π β β0
β§ (π / 2) β
β0) β ((π mod 2) = 0 β (π / 2) β β€)) |
31 | 25, 30 | mpbird 256 |
. . . 4
β’ ((π β β0
β§ (π / 2) β
β0) β (π mod 2) = 0) |
32 | 23, 31 | eqtrd 2770 |
. . 3
β’ ((π β β0
β§ (π / 2) β
β0) β ((ββπ) mod 2) = 0) |
33 | 18, 32 | eqtrd 2770 |
. 2
β’ ((π β β0
β§ (π / 2) β
β0) β ((ββ(π / (2β0))) mod 2) = 0) |
34 | 8, 33 | eqtrd 2770 |
1
β’ ((π β β0
β§ (π / 2) β
β0) β (0(digitβ2)π) = 0) |