| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0dig2nn0e | Structured version Visualization version GIF version | ||
| Description: The last bit of an even integer is 0. (Contributed by AV, 3-Jun-2010.) |
| Ref | Expression |
|---|---|
| 0dig2nn0e | ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 12193 | . . . 4 ⊢ 2 ∈ ℕ | |
| 2 | 1 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → 2 ∈ ℕ) |
| 3 | 0nn0 12391 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → 0 ∈ ℕ0) |
| 5 | nn0rp0 13350 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0[,)+∞)) | |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → 𝑁 ∈ (0[,)+∞)) |
| 7 | nn0digval 48632 | . . 3 ⊢ ((2 ∈ ℕ ∧ 0 ∈ ℕ0 ∧ 𝑁 ∈ (0[,)+∞)) → (0(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑0))) mod 2)) | |
| 8 | 2, 4, 6, 7 | syl3anc 1373 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑0))) mod 2)) |
| 9 | 2cn 12195 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
| 10 | exp0 13967 | . . . . . . . 8 ⊢ (2 ∈ ℂ → (2↑0) = 1) | |
| 11 | 9, 10 | mp1i 13 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (2↑0) = 1) |
| 12 | 11 | oveq2d 7357 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 / (2↑0)) = (𝑁 / 1)) |
| 13 | nn0cn 12386 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
| 14 | 13 | div1d 11884 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 / 1) = 𝑁) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 / 1) = 𝑁) |
| 16 | 12, 15 | eqtrd 2766 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 / (2↑0)) = 𝑁) |
| 17 | 16 | fveq2d 6821 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (⌊‘(𝑁 / (2↑0))) = (⌊‘𝑁)) |
| 18 | 17 | oveq1d 7356 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ((⌊‘(𝑁 / (2↑0))) mod 2) = ((⌊‘𝑁) mod 2)) |
| 19 | nn0z 12488 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 20 | flid 13707 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁) | |
| 21 | 19, 20 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (⌊‘𝑁) = 𝑁) |
| 22 | 21 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (⌊‘𝑁) = 𝑁) |
| 23 | 22 | oveq1d 7356 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ((⌊‘𝑁) mod 2) = (𝑁 mod 2)) |
| 24 | nn0z 12488 | . . . . . 6 ⊢ ((𝑁 / 2) ∈ ℕ0 → (𝑁 / 2) ∈ ℤ) | |
| 25 | 24 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 / 2) ∈ ℤ) |
| 26 | nn0re 12385 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 27 | 26 | adantr 480 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → 𝑁 ∈ ℝ) |
| 28 | 2rp 12890 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
| 29 | mod0 13775 | . . . . . 6 ⊢ ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ+) → ((𝑁 mod 2) = 0 ↔ (𝑁 / 2) ∈ ℤ)) | |
| 30 | 27, 28, 29 | sylancl 586 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ((𝑁 mod 2) = 0 ↔ (𝑁 / 2) ∈ ℤ)) |
| 31 | 25, 30 | mpbird 257 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 mod 2) = 0) |
| 32 | 23, 31 | eqtrd 2766 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ((⌊‘𝑁) mod 2) = 0) |
| 33 | 18, 32 | eqtrd 2766 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ((⌊‘(𝑁 / (2↑0))) mod 2) = 0) |
| 34 | 8, 33 | eqtrd 2766 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 ℝcr 11000 0cc0 11001 1c1 11002 +∞cpnf 11138 / cdiv 11769 ℕcn 12120 2c2 12175 ℕ0cn0 12376 ℤcz 12463 ℝ+crp 12885 [,)cico 13242 ⌊cfl 13689 mod cmo 13768 ↑cexp 13963 digitcdig 48627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-ico 13246 df-fl 13691 df-mod 13769 df-seq 13904 df-exp 13964 df-dig 48628 |
| This theorem is referenced by: nn0sumshdiglemA 48651 |
| Copyright terms: Public domain | W3C validator |