Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0dig2nn0e | Structured version Visualization version GIF version |
Description: The last bit of an even integer is 0. (Contributed by AV, 3-Jun-2010.) |
Ref | Expression |
---|---|
0dig2nn0e | ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 12029 | . . . 4 ⊢ 2 ∈ ℕ | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → 2 ∈ ℕ) |
3 | 0nn0 12231 | . . . 4 ⊢ 0 ∈ ℕ0 | |
4 | 3 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → 0 ∈ ℕ0) |
5 | nn0rp0 13169 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0[,)+∞)) | |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → 𝑁 ∈ (0[,)+∞)) |
7 | nn0digval 45898 | . . 3 ⊢ ((2 ∈ ℕ ∧ 0 ∈ ℕ0 ∧ 𝑁 ∈ (0[,)+∞)) → (0(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑0))) mod 2)) | |
8 | 2, 4, 6, 7 | syl3anc 1369 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑0))) mod 2)) |
9 | 2cn 12031 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
10 | exp0 13767 | . . . . . . . 8 ⊢ (2 ∈ ℂ → (2↑0) = 1) | |
11 | 9, 10 | mp1i 13 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (2↑0) = 1) |
12 | 11 | oveq2d 7284 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 / (2↑0)) = (𝑁 / 1)) |
13 | nn0cn 12226 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
14 | 13 | div1d 11726 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 / 1) = 𝑁) |
15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 / 1) = 𝑁) |
16 | 12, 15 | eqtrd 2779 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 / (2↑0)) = 𝑁) |
17 | 16 | fveq2d 6772 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (⌊‘(𝑁 / (2↑0))) = (⌊‘𝑁)) |
18 | 17 | oveq1d 7283 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ((⌊‘(𝑁 / (2↑0))) mod 2) = ((⌊‘𝑁) mod 2)) |
19 | nn0z 12326 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
20 | flid 13509 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁) | |
21 | 19, 20 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (⌊‘𝑁) = 𝑁) |
22 | 21 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (⌊‘𝑁) = 𝑁) |
23 | 22 | oveq1d 7283 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ((⌊‘𝑁) mod 2) = (𝑁 mod 2)) |
24 | nn0z 12326 | . . . . . 6 ⊢ ((𝑁 / 2) ∈ ℕ0 → (𝑁 / 2) ∈ ℤ) | |
25 | 24 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 / 2) ∈ ℤ) |
26 | nn0re 12225 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
27 | 26 | adantr 480 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → 𝑁 ∈ ℝ) |
28 | 2rp 12717 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
29 | mod0 13577 | . . . . . 6 ⊢ ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ+) → ((𝑁 mod 2) = 0 ↔ (𝑁 / 2) ∈ ℤ)) | |
30 | 27, 28, 29 | sylancl 585 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ((𝑁 mod 2) = 0 ↔ (𝑁 / 2) ∈ ℤ)) |
31 | 25, 30 | mpbird 256 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 mod 2) = 0) |
32 | 23, 31 | eqtrd 2779 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ((⌊‘𝑁) mod 2) = 0) |
33 | 18, 32 | eqtrd 2779 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ((⌊‘(𝑁 / (2↑0))) mod 2) = 0) |
34 | 8, 33 | eqtrd 2779 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 ℂcc 10853 ℝcr 10854 0cc0 10855 1c1 10856 +∞cpnf 10990 / cdiv 11615 ℕcn 11956 2c2 12011 ℕ0cn0 12216 ℤcz 12302 ℝ+crp 12712 [,)cico 13063 ⌊cfl 13491 mod cmo 13570 ↑cexp 13763 digitcdig 45893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-sup 9162 df-inf 9163 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-n0 12217 df-z 12303 df-uz 12565 df-rp 12713 df-ico 13067 df-fl 13493 df-mod 13571 df-seq 13703 df-exp 13764 df-dig 45894 |
This theorem is referenced by: nn0sumshdiglemA 45917 |
Copyright terms: Public domain | W3C validator |