Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0dig2nn0e Structured version   Visualization version   GIF version

Theorem 0dig2nn0e 48605
Description: The last bit of an even integer is 0. (Contributed by AV, 3-Jun-2010.)
Assertion
Ref Expression
0dig2nn0e ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = 0)

Proof of Theorem 0dig2nn0e
StepHypRef Expression
1 2nn 12266 . . . 4 2 ∈ ℕ
21a1i 11 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → 2 ∈ ℕ)
3 0nn0 12464 . . . 4 0 ∈ ℕ0
43a1i 11 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → 0 ∈ ℕ0)
5 nn0rp0 13423 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ (0[,)+∞))
65adantr 480 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → 𝑁 ∈ (0[,)+∞))
7 nn0digval 48593 . . 3 ((2 ∈ ℕ ∧ 0 ∈ ℕ0𝑁 ∈ (0[,)+∞)) → (0(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑0))) mod 2))
82, 4, 6, 7syl3anc 1373 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑0))) mod 2))
9 2cn 12268 . . . . . . . 8 2 ∈ ℂ
10 exp0 14037 . . . . . . . 8 (2 ∈ ℂ → (2↑0) = 1)
119, 10mp1i 13 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (2↑0) = 1)
1211oveq2d 7406 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 / (2↑0)) = (𝑁 / 1))
13 nn0cn 12459 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
1413div1d 11957 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 / 1) = 𝑁)
1514adantr 480 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 / 1) = 𝑁)
1612, 15eqtrd 2765 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 / (2↑0)) = 𝑁)
1716fveq2d 6865 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (⌊‘(𝑁 / (2↑0))) = (⌊‘𝑁))
1817oveq1d 7405 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ((⌊‘(𝑁 / (2↑0))) mod 2) = ((⌊‘𝑁) mod 2))
19 nn0z 12561 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
20 flid 13777 . . . . . . 7 (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁)
2119, 20syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → (⌊‘𝑁) = 𝑁)
2221adantr 480 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (⌊‘𝑁) = 𝑁)
2322oveq1d 7405 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ((⌊‘𝑁) mod 2) = (𝑁 mod 2))
24 nn0z 12561 . . . . . 6 ((𝑁 / 2) ∈ ℕ0 → (𝑁 / 2) ∈ ℤ)
2524adantl 481 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 / 2) ∈ ℤ)
26 nn0re 12458 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2726adantr 480 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → 𝑁 ∈ ℝ)
28 2rp 12963 . . . . . 6 2 ∈ ℝ+
29 mod0 13845 . . . . . 6 ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ+) → ((𝑁 mod 2) = 0 ↔ (𝑁 / 2) ∈ ℤ))
3027, 28, 29sylancl 586 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ((𝑁 mod 2) = 0 ↔ (𝑁 / 2) ∈ ℤ))
3125, 30mpbird 257 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 mod 2) = 0)
3223, 31eqtrd 2765 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ((⌊‘𝑁) mod 2) = 0)
3318, 32eqtrd 2765 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ((⌊‘(𝑁 / (2↑0))) mod 2) = 0)
348, 33eqtrd 2765 1 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076  +∞cpnf 11212   / cdiv 11842  cn 12193  2c2 12248  0cn0 12449  cz 12536  +crp 12958  [,)cico 13315  cfl 13759   mod cmo 13838  cexp 14033  digitcdig 48588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-dig 48589
This theorem is referenced by:  nn0sumshdiglemA  48612
  Copyright terms: Public domain W3C validator