Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > absidd | Structured version Visualization version GIF version |
Description: A nonnegative number is its own absolute value. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
resqrcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
resqrcld.2 | ⊢ (𝜑 → 0 ≤ 𝐴) |
Ref | Expression |
---|---|
absidd | ⊢ (𝜑 → (abs‘𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqrcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | resqrcld.2 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) | |
3 | absid 15017 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (abs‘𝐴) = 𝐴) |
Copyright terms: Public domain | W3C validator |