MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgid Structured version   Visualization version   GIF version

Theorem symgid 19347
Description: The group identity element of the symmetric group on a set 𝐴. (Contributed by Paul Chapman, 25-Jul-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 1-Apr-2024.)
Hypothesis
Ref Expression
symggrp.1 𝐺 = (SymGrp‘𝐴)
Assertion
Ref Expression
symgid (𝐴𝑉 → ( I ↾ 𝐴) = (0g𝐺))

Proof of Theorem symgid
StepHypRef Expression
1 eqid 2727 . . 3 (EndoFMnd‘𝐴) = (EndoFMnd‘𝐴)
21efmndid 18831 . 2 (𝐴𝑉 → ( I ↾ 𝐴) = (0g‘(EndoFMnd‘𝐴)))
3 symggrp.1 . . . 4 𝐺 = (SymGrp‘𝐴)
4 eqid 2727 . . . 4 (Base‘𝐺) = (Base‘𝐺)
51, 3, 4symgsubmefmnd 19344 . . 3 (𝐴𝑉 → (Base‘𝐺) ∈ (SubMnd‘(EndoFMnd‘𝐴)))
63, 4, 1symgressbas 19327 . . . 4 𝐺 = ((EndoFMnd‘𝐴) ↾s (Base‘𝐺))
7 eqid 2727 . . . 4 (0g‘(EndoFMnd‘𝐴)) = (0g‘(EndoFMnd‘𝐴))
86, 7subm0 18758 . . 3 ((Base‘𝐺) ∈ (SubMnd‘(EndoFMnd‘𝐴)) → (0g‘(EndoFMnd‘𝐴)) = (0g𝐺))
95, 8syl 17 . 2 (𝐴𝑉 → (0g‘(EndoFMnd‘𝐴)) = (0g𝐺))
102, 9eqtrd 2767 1 (𝐴𝑉 → ( I ↾ 𝐴) = (0g𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099   I cid 5569  cres 5674  cfv 6542  Basecbs 17171  0gc0g 17412  SubMndcsubmnd 18730  EndoFMndcefmnd 18811  SymGrpcsymg 19312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-uz 12845  df-fz 13509  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-tset 17243  df-0g 17414  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-submnd 18732  df-efmnd 18812  df-symg 19313
This theorem is referenced by:  symginv  19348  lactghmga  19351  idressubgsymg  19356  cayleylem2  19359  gsmsymgrfix  19374  gsmsymgreq  19378  symgsssg  19413  symgfisg  19414  symggen  19416  psgnunilem2  19441  psgnuni  19445  psgn0fv0  19457  psgnsn  19466  psgnprfval1  19468  madetsumid  22350  mdetdiag  22488  mdetunilem7  22507  psgnid  32796  cyc3genpmlem  32850
  Copyright terms: Public domain W3C validator