![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acsdrscl | Structured version Visualization version GIF version |
Description: In an algebraic closure system, closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
Ref | Expression |
---|---|
acsdrscl.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
acsdrscl | ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝒫 𝑋 ∧ (toInc‘𝑌) ∈ Dirset) → (𝐹‘∪ 𝑌) = ∪ (𝐹 “ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6907 | . . . . 5 ⊢ (𝑡 = 𝑌 → (toInc‘𝑡) = (toInc‘𝑌)) | |
2 | 1 | eleq1d 2824 | . . . 4 ⊢ (𝑡 = 𝑌 → ((toInc‘𝑡) ∈ Dirset ↔ (toInc‘𝑌) ∈ Dirset)) |
3 | unieq 4923 | . . . . . 6 ⊢ (𝑡 = 𝑌 → ∪ 𝑡 = ∪ 𝑌) | |
4 | 3 | fveq2d 6911 | . . . . 5 ⊢ (𝑡 = 𝑌 → (𝐹‘∪ 𝑡) = (𝐹‘∪ 𝑌)) |
5 | imaeq2 6076 | . . . . . 6 ⊢ (𝑡 = 𝑌 → (𝐹 “ 𝑡) = (𝐹 “ 𝑌)) | |
6 | 5 | unieqd 4925 | . . . . 5 ⊢ (𝑡 = 𝑌 → ∪ (𝐹 “ 𝑡) = ∪ (𝐹 “ 𝑌)) |
7 | 4, 6 | eqeq12d 2751 | . . . 4 ⊢ (𝑡 = 𝑌 → ((𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡) ↔ (𝐹‘∪ 𝑌) = ∪ (𝐹 “ 𝑌))) |
8 | 2, 7 | imbi12d 344 | . . 3 ⊢ (𝑡 = 𝑌 → (((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡)) ↔ ((toInc‘𝑌) ∈ Dirset → (𝐹‘∪ 𝑌) = ∪ (𝐹 “ 𝑌)))) |
9 | isacs3lem 18600 | . . . . . 6 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶))) | |
10 | acsdrscl.f | . . . . . . 7 ⊢ 𝐹 = (mrCls‘𝐶) | |
11 | 10 | isacs4lem 18602 | . . . . . 6 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶)) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡)))) |
12 | 9, 11 | syl 17 | . . . . 5 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡)))) |
13 | 12 | simprd 495 | . . . 4 ⊢ (𝐶 ∈ (ACS‘𝑋) → ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡))) |
14 | 13 | adantr 480 | . . 3 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝒫 𝑋) → ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡))) |
15 | elfvdm 6944 | . . . . 5 ⊢ (𝐶 ∈ (ACS‘𝑋) → 𝑋 ∈ dom ACS) | |
16 | pwexg 5384 | . . . . 5 ⊢ (𝑋 ∈ dom ACS → 𝒫 𝑋 ∈ V) | |
17 | elpw2g 5339 | . . . . 5 ⊢ (𝒫 𝑋 ∈ V → (𝑌 ∈ 𝒫 𝒫 𝑋 ↔ 𝑌 ⊆ 𝒫 𝑋)) | |
18 | 15, 16, 17 | 3syl 18 | . . . 4 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑌 ∈ 𝒫 𝒫 𝑋 ↔ 𝑌 ⊆ 𝒫 𝑋)) |
19 | 18 | biimpar 477 | . . 3 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝒫 𝑋) → 𝑌 ∈ 𝒫 𝒫 𝑋) |
20 | 8, 14, 19 | rspcdva 3623 | . 2 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝒫 𝑋) → ((toInc‘𝑌) ∈ Dirset → (𝐹‘∪ 𝑌) = ∪ (𝐹 “ 𝑌))) |
21 | 20 | 3impia 1116 | 1 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝒫 𝑋 ∧ (toInc‘𝑌) ∈ Dirset) → (𝐹‘∪ 𝑌) = ∪ (𝐹 “ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ⊆ wss 3963 𝒫 cpw 4605 ∪ cuni 4912 dom cdm 5689 “ cima 5692 ‘cfv 6563 Moorecmre 17627 mrClscmrc 17628 ACScacs 17630 Dirsetcdrs 18351 toInccipo 18585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-struct 17181 df-slot 17216 df-ndx 17228 df-base 17246 df-tset 17317 df-ple 17318 df-ocomp 17319 df-mre 17631 df-mrc 17632 df-acs 17634 df-proset 18352 df-drs 18353 df-poset 18371 df-ipo 18586 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |