MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsdrscl Structured version   Visualization version   GIF version

Theorem acsdrscl 18556
Description: In an algebraic closure system, closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
acsdrscl.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
acsdrscl ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝒫 𝑋 ∧ (toInc‘𝑌) ∈ Dirset) → (𝐹 𝑌) = (𝐹𝑌))

Proof of Theorem acsdrscl
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6876 . . . . 5 (𝑡 = 𝑌 → (toInc‘𝑡) = (toInc‘𝑌))
21eleq1d 2819 . . . 4 (𝑡 = 𝑌 → ((toInc‘𝑡) ∈ Dirset ↔ (toInc‘𝑌) ∈ Dirset))
3 unieq 4894 . . . . . 6 (𝑡 = 𝑌 𝑡 = 𝑌)
43fveq2d 6880 . . . . 5 (𝑡 = 𝑌 → (𝐹 𝑡) = (𝐹 𝑌))
5 imaeq2 6043 . . . . . 6 (𝑡 = 𝑌 → (𝐹𝑡) = (𝐹𝑌))
65unieqd 4896 . . . . 5 (𝑡 = 𝑌 (𝐹𝑡) = (𝐹𝑌))
74, 6eqeq12d 2751 . . . 4 (𝑡 = 𝑌 → ((𝐹 𝑡) = (𝐹𝑡) ↔ (𝐹 𝑌) = (𝐹𝑌)))
82, 7imbi12d 344 . . 3 (𝑡 = 𝑌 → (((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡)) ↔ ((toInc‘𝑌) ∈ Dirset → (𝐹 𝑌) = (𝐹𝑌))))
9 isacs3lem 18552 . . . . . 6 (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
10 acsdrscl.f . . . . . . 7 𝐹 = (mrCls‘𝐶)
1110isacs4lem 18554 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))))
129, 11syl 17 . . . . 5 (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))))
1312simprd 495 . . . 4 (𝐶 ∈ (ACS‘𝑋) → ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡)))
1413adantr 480 . . 3 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝒫 𝑋) → ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡)))
15 elfvdm 6913 . . . . 5 (𝐶 ∈ (ACS‘𝑋) → 𝑋 ∈ dom ACS)
16 pwexg 5348 . . . . 5 (𝑋 ∈ dom ACS → 𝒫 𝑋 ∈ V)
17 elpw2g 5303 . . . . 5 (𝒫 𝑋 ∈ V → (𝑌 ∈ 𝒫 𝒫 𝑋𝑌 ⊆ 𝒫 𝑋))
1815, 16, 173syl 18 . . . 4 (𝐶 ∈ (ACS‘𝑋) → (𝑌 ∈ 𝒫 𝒫 𝑋𝑌 ⊆ 𝒫 𝑋))
1918biimpar 477 . . 3 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝒫 𝑋) → 𝑌 ∈ 𝒫 𝒫 𝑋)
208, 14, 19rspcdva 3602 . 2 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝒫 𝑋) → ((toInc‘𝑌) ∈ Dirset → (𝐹 𝑌) = (𝐹𝑌)))
21203impia 1117 1 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝒫 𝑋 ∧ (toInc‘𝑌) ∈ Dirset) → (𝐹 𝑌) = (𝐹𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  wss 3926  𝒫 cpw 4575   cuni 4883  dom cdm 5654  cima 5657  cfv 6531  Moorecmre 17594  mrClscmrc 17595  ACScacs 17597  Dirsetcdrs 18305  toInccipo 18537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-tset 17290  df-ple 17291  df-ocomp 17292  df-mre 17598  df-mrc 17599  df-acs 17601  df-proset 18306  df-drs 18307  df-poset 18325  df-ipo 18538
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator