MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elwwlks2on Structured version   Visualization version   GIF version

Theorem elwwlks2on 29885
Description: A walk of length 2 between two vertices as length 3 string. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.)
Hypothesis
Ref Expression
elwwlks2on.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
elwwlks2on ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2))))
Distinct variable groups:   𝐴,𝑏,𝑓   𝐶,𝑏,𝑓   𝐺,𝑏,𝑓   𝑉,𝑏   𝑊,𝑏,𝑓
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem elwwlks2on
StepHypRef Expression
1 elwwlks2on.v . . 3 𝑉 = (Vtx‘𝐺)
21elwwlks2ons3 29881 . 2 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
31s3wwlks2on 29882 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝑏𝐶”⟩ ∧ (♯‘𝑓) = 2)))
4 breq2 5156 . . . . . . . 8 (⟨“𝐴𝑏𝐶”⟩ = 𝑊 → (𝑓(Walks‘𝐺)⟨“𝐴𝑏𝐶”⟩ ↔ 𝑓(Walks‘𝐺)𝑊))
54eqcoms 2733 . . . . . . 7 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ → (𝑓(Walks‘𝐺)⟨“𝐴𝑏𝐶”⟩ ↔ 𝑓(Walks‘𝐺)𝑊))
65anbi1d 629 . . . . . 6 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ → ((𝑓(Walks‘𝐺)⟨“𝐴𝑏𝐶”⟩ ∧ (♯‘𝑓) = 2) ↔ (𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)))
76exbidv 1916 . . . . 5 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ → (∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝑏𝐶”⟩ ∧ (♯‘𝑓) = 2) ↔ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)))
83, 7sylan9bb 508 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) ∧ 𝑊 = ⟨“𝐴𝑏𝐶”⟩) → (⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)))
98pm5.32da 577 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2))))
109rexbidv 3168 . 2 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2))))
112, 10bitrid 282 1 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wex 1773  wcel 2098  wrex 3059   class class class wbr 5152  cfv 6553  (class class class)co 7423  2c2 12314  chash 14342  ⟨“cs3 14846  Vtxcvtx 28924  UPGraphcupgr 29008  Walkscwlks 29525   WWalksNOn cwwlksnon 29753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-ac2 10502  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-se 5637  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-om 7876  df-1st 8002  df-2nd 8003  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-2o 8496  df-oadd 8499  df-er 8733  df-map 8856  df-pm 8857  df-en 8974  df-dom 8975  df-sdom 8976  df-fin 8977  df-dju 9940  df-card 9978  df-ac 10155  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-nn 12260  df-2 12322  df-3 12323  df-n0 12520  df-xnn0 12592  df-z 12606  df-uz 12870  df-fz 13534  df-fzo 13677  df-hash 14343  df-word 14518  df-concat 14574  df-s1 14599  df-s2 14852  df-s3 14853  df-edg 28976  df-uhgr 28986  df-upgr 29010  df-wlks 29528  df-wwlks 29756  df-wwlksn 29757  df-wwlksnon 29758
This theorem is referenced by:  elwspths2on  29886  elwwlks2  29892
  Copyright terms: Public domain W3C validator