![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > extwwlkfabel | Structured version Visualization version GIF version |
Description: Characterization of an element of the set (𝑋𝐶𝑁), i.e., a double loop of length 𝑁 on vertex 𝑋 with a construction from the set 𝐹 of closed walks on 𝑋 with length smaller by 2 than the fixed length by appending a neighbor of the last vertex and afterwards the last vertex (which is the first vertex) itself ("walking forth and back" from the last vertex). (Contributed by AV, 22-Feb-2022.) (Revised by AV, 31-Oct-2022.) |
Ref | Expression |
---|---|
extwwlkfab.v | ⊢ 𝑉 = (Vtx‘𝐺) |
extwwlkfab.c | ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
extwwlkfab.f | ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) |
Ref | Expression |
---|---|
extwwlkfabel | ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑊 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | extwwlkfab.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | extwwlkfab.c | . . . 4 ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) | |
3 | extwwlkfab.f | . . . 4 ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) | |
4 | 1, 2, 3 | extwwlkfab 30234 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)}) |
5 | 4 | eleq2d 2811 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ 𝑊 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})) |
6 | oveq1 7426 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑤 prefix (𝑁 − 2)) = (𝑊 prefix (𝑁 − 2))) | |
7 | 6 | eleq1d 2810 | . . . 4 ⊢ (𝑤 = 𝑊 → ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ↔ (𝑊 prefix (𝑁 − 2)) ∈ 𝐹)) |
8 | fveq1 6895 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑤‘(𝑁 − 1)) = (𝑊‘(𝑁 − 1))) | |
9 | 8 | eleq1d 2810 | . . . 4 ⊢ (𝑤 = 𝑊 → ((𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ↔ (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋))) |
10 | fveq1 6895 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑤‘(𝑁 − 2)) = (𝑊‘(𝑁 − 2))) | |
11 | 10 | eqeq1d 2727 | . . . 4 ⊢ (𝑤 = 𝑊 → ((𝑤‘(𝑁 − 2)) = 𝑋 ↔ (𝑊‘(𝑁 − 2)) = 𝑋)) |
12 | 7, 9, 11 | 3anbi123d 1432 | . . 3 ⊢ (𝑤 = 𝑊 → (((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑊 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑊‘(𝑁 − 2)) = 𝑋))) |
13 | 12 | elrab 3679 | . 2 ⊢ (𝑊 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)} ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑊 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑊‘(𝑁 − 2)) = 𝑋))) |
14 | 5, 13 | bitrdi 286 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑊 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 {crab 3418 ‘cfv 6549 (class class class)co 7419 ∈ cmpo 7421 1c1 11141 − cmin 11476 2c2 12300 3c3 12301 ℤ≥cuz 12855 prefix cpfx 14656 Vtxcvtx 28881 USGraphcusgr 29034 NeighbVtx cnbgr 29217 ClWWalksN cclwwlkn 29906 ClWWalksNOncclwwlknon 29969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9926 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-xnn0 12578 df-z 12592 df-uz 12856 df-fz 13520 df-fzo 13663 df-hash 14326 df-word 14501 df-lsw 14549 df-substr 14627 df-pfx 14657 df-edg 28933 df-upgr 28967 df-umgr 28968 df-usgr 29036 df-nbgr 29218 df-wwlks 29713 df-wwlksn 29714 df-clwwlk 29864 df-clwwlkn 29907 df-clwwlknon 29970 |
This theorem is referenced by: numclwwlk1lem2foa 30236 numclwwlk1lem2f 30237 |
Copyright terms: Public domain | W3C validator |