|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > extwwlkfabel | Structured version Visualization version GIF version | ||
| Description: Characterization of an element of the set (𝑋𝐶𝑁), i.e., a double loop of length 𝑁 on vertex 𝑋 with a construction from the set 𝐹 of closed walks on 𝑋 with length smaller by 2 than the fixed length by appending a neighbor of the last vertex and afterwards the last vertex (which is the first vertex) itself ("walking forth and back" from the last vertex). (Contributed by AV, 22-Feb-2022.) (Revised by AV, 31-Oct-2022.) | 
| Ref | Expression | 
|---|---|
| extwwlkfab.v | ⊢ 𝑉 = (Vtx‘𝐺) | 
| extwwlkfab.c | ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) | 
| extwwlkfab.f | ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) | 
| Ref | Expression | 
|---|---|
| extwwlkfabel | ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑊 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | extwwlkfab.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | extwwlkfab.c | . . . 4 ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) | |
| 3 | extwwlkfab.f | . . . 4 ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) | |
| 4 | 1, 2, 3 | extwwlkfab 30372 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)}) | 
| 5 | 4 | eleq2d 2826 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ 𝑊 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})) | 
| 6 | oveq1 7439 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑤 prefix (𝑁 − 2)) = (𝑊 prefix (𝑁 − 2))) | |
| 7 | 6 | eleq1d 2825 | . . . 4 ⊢ (𝑤 = 𝑊 → ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ↔ (𝑊 prefix (𝑁 − 2)) ∈ 𝐹)) | 
| 8 | fveq1 6904 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑤‘(𝑁 − 1)) = (𝑊‘(𝑁 − 1))) | |
| 9 | 8 | eleq1d 2825 | . . . 4 ⊢ (𝑤 = 𝑊 → ((𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ↔ (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋))) | 
| 10 | fveq1 6904 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑤‘(𝑁 − 2)) = (𝑊‘(𝑁 − 2))) | |
| 11 | 10 | eqeq1d 2738 | . . . 4 ⊢ (𝑤 = 𝑊 → ((𝑤‘(𝑁 − 2)) = 𝑋 ↔ (𝑊‘(𝑁 − 2)) = 𝑋)) | 
| 12 | 7, 9, 11 | 3anbi123d 1437 | . . 3 ⊢ (𝑤 = 𝑊 → (((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑊 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑊‘(𝑁 − 2)) = 𝑋))) | 
| 13 | 12 | elrab 3691 | . 2 ⊢ (𝑊 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)} ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑊 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑊‘(𝑁 − 2)) = 𝑋))) | 
| 14 | 5, 13 | bitrdi 287 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑊 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {crab 3435 ‘cfv 6560 (class class class)co 7432 ∈ cmpo 7434 1c1 11157 − cmin 11493 2c2 12322 3c3 12323 ℤ≥cuz 12879 prefix cpfx 14709 Vtxcvtx 29014 USGraphcusgr 29167 NeighbVtx cnbgr 29350 ClWWalksN cclwwlkn 30044 ClWWalksNOncclwwlknon 30107 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-oadd 8511 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-dju 9942 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-xnn0 12602 df-z 12616 df-uz 12880 df-fz 13549 df-fzo 13696 df-hash 14371 df-word 14554 df-lsw 14602 df-substr 14680 df-pfx 14710 df-edg 29066 df-upgr 29100 df-umgr 29101 df-usgr 29169 df-nbgr 29351 df-wwlks 29851 df-wwlksn 29852 df-clwwlk 30002 df-clwwlkn 30045 df-clwwlknon 30108 | 
| This theorem is referenced by: numclwwlk1lem2foa 30374 numclwwlk1lem2f 30375 | 
| Copyright terms: Public domain | W3C validator |