| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > extwwlkfabel | Structured version Visualization version GIF version | ||
| Description: Characterization of an element of the set (𝑋𝐶𝑁), i.e., a double loop of length 𝑁 on vertex 𝑋 with a construction from the set 𝐹 of closed walks on 𝑋 with length smaller by 2 than the fixed length by appending a neighbor of the last vertex and afterwards the last vertex (which is the first vertex) itself ("walking forth and back" from the last vertex). (Contributed by AV, 22-Feb-2022.) (Revised by AV, 31-Oct-2022.) |
| Ref | Expression |
|---|---|
| extwwlkfab.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| extwwlkfab.c | ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
| extwwlkfab.f | ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) |
| Ref | Expression |
|---|---|
| extwwlkfabel | ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑊 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | extwwlkfab.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | extwwlkfab.c | . . . 4 ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) | |
| 3 | extwwlkfab.f | . . . 4 ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) | |
| 4 | 1, 2, 3 | extwwlkfab 30322 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)}) |
| 5 | 4 | eleq2d 2815 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ 𝑊 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})) |
| 6 | oveq1 7348 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑤 prefix (𝑁 − 2)) = (𝑊 prefix (𝑁 − 2))) | |
| 7 | 6 | eleq1d 2814 | . . . 4 ⊢ (𝑤 = 𝑊 → ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ↔ (𝑊 prefix (𝑁 − 2)) ∈ 𝐹)) |
| 8 | fveq1 6816 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑤‘(𝑁 − 1)) = (𝑊‘(𝑁 − 1))) | |
| 9 | 8 | eleq1d 2814 | . . . 4 ⊢ (𝑤 = 𝑊 → ((𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ↔ (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋))) |
| 10 | fveq1 6816 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑤‘(𝑁 − 2)) = (𝑊‘(𝑁 − 2))) | |
| 11 | 10 | eqeq1d 2732 | . . . 4 ⊢ (𝑤 = 𝑊 → ((𝑤‘(𝑁 − 2)) = 𝑋 ↔ (𝑊‘(𝑁 − 2)) = 𝑋)) |
| 12 | 7, 9, 11 | 3anbi123d 1438 | . . 3 ⊢ (𝑤 = 𝑊 → (((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑊 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑊‘(𝑁 − 2)) = 𝑋))) |
| 13 | 12 | elrab 3645 | . 2 ⊢ (𝑊 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)} ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑊 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑊‘(𝑁 − 2)) = 𝑋))) |
| 14 | 5, 13 | bitrdi 287 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑊 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 {crab 3393 ‘cfv 6477 (class class class)co 7341 ∈ cmpo 7343 1c1 10999 − cmin 11336 2c2 12172 3c3 12173 ℤ≥cuz 12724 prefix cpfx 14570 Vtxcvtx 28967 USGraphcusgr 29120 NeighbVtx cnbgr 29303 ClWWalksN cclwwlkn 29994 ClWWalksNOncclwwlknon 30057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-dju 9786 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-xnn0 12447 df-z 12461 df-uz 12725 df-fz 13400 df-fzo 13547 df-hash 14230 df-word 14413 df-lsw 14462 df-substr 14541 df-pfx 14571 df-edg 29019 df-upgr 29053 df-umgr 29054 df-usgr 29122 df-nbgr 29304 df-wwlks 29801 df-wwlksn 29802 df-clwwlk 29952 df-clwwlkn 29995 df-clwwlknon 30058 |
| This theorem is referenced by: numclwwlk1lem2foa 30324 numclwwlk1lem2f 30325 |
| Copyright terms: Public domain | W3C validator |