![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flo1 | Structured version Visualization version GIF version |
Description: The floor function satisfies ⌊(𝑥) = 𝑥 + 𝑂(1). (Contributed by Mario Carneiro, 21-May-2016.) |
Ref | Expression |
---|---|
flo1 | ⊢ (𝑥 ∈ ℝ ↦ (𝑥 − (⌊‘𝑥))) ∈ 𝑂(1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssidd 4004 | . . 3 ⊢ (⊤ → ℝ ⊆ ℝ) | |
2 | reflcl 13757 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ) | |
3 | resubcl 11520 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ (⌊‘𝑥) ∈ ℝ) → (𝑥 − (⌊‘𝑥)) ∈ ℝ) | |
4 | 2, 3 | mpdan 686 | . . . . 5 ⊢ (𝑥 ∈ ℝ → (𝑥 − (⌊‘𝑥)) ∈ ℝ) |
5 | 4 | recnd 11238 | . . . 4 ⊢ (𝑥 ∈ ℝ → (𝑥 − (⌊‘𝑥)) ∈ ℂ) |
6 | 5 | adantl 483 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → (𝑥 − (⌊‘𝑥)) ∈ ℂ) |
7 | 1red 11211 | . . 3 ⊢ (⊤ → 1 ∈ ℝ) | |
8 | id 22 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ) | |
9 | flle 13760 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥) | |
10 | 2, 8, 9 | abssubge0d 15374 | . . . . 5 ⊢ (𝑥 ∈ ℝ → (abs‘(𝑥 − (⌊‘𝑥))) = (𝑥 − (⌊‘𝑥))) |
11 | fracle1 13764 | . . . . 5 ⊢ (𝑥 ∈ ℝ → (𝑥 − (⌊‘𝑥)) ≤ 1) | |
12 | 10, 11 | eqbrtrd 5169 | . . . 4 ⊢ (𝑥 ∈ ℝ → (abs‘(𝑥 − (⌊‘𝑥))) ≤ 1) |
13 | 12 | ad2antrl 727 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → (abs‘(𝑥 − (⌊‘𝑥))) ≤ 1) |
14 | 1, 6, 7, 7, 13 | elo1d 15476 | . 2 ⊢ (⊤ → (𝑥 ∈ ℝ ↦ (𝑥 − (⌊‘𝑥))) ∈ 𝑂(1)) |
15 | 14 | mptru 1549 | 1 ⊢ (𝑥 ∈ ℝ ↦ (𝑥 − (⌊‘𝑥))) ∈ 𝑂(1) |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1543 ∈ wcel 2107 class class class wbr 5147 ↦ cmpt 5230 ‘cfv 6540 (class class class)co 7404 ℂcc 11104 ℝcr 11105 1c1 11107 ≤ cle 11245 − cmin 11440 ⌊cfl 13751 abscabs 15177 𝑂(1)co1 15426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-ico 13326 df-fl 13753 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-o1 15430 df-lo1 15431 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |