Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > flt4lem1 | Structured version Visualization version GIF version |
Description: Satisfy the antecedent used in several pythagtrip 16417 lemmas, with 𝐴, 𝐶 coprime rather than 𝐴, 𝐵. (Contributed by SN, 21-Aug-2024.) |
Ref | Expression |
---|---|
flt4lem1.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
flt4lem1.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
flt4lem1.c | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
flt4lem1.1 | ⊢ (𝜑 → ¬ 2 ∥ 𝐴) |
flt4lem1.2 | ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) |
flt4lem1.3 | ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) |
Ref | Expression |
---|---|
flt4lem1 | ⊢ (𝜑 → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flt4lem1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | flt4lem1.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
3 | flt4lem1.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
4 | 1, 2, 3 | 3jca 1130 | . 2 ⊢ (𝜑 → (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ)) |
5 | flt4lem1.3 | . 2 ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) | |
6 | flt4lem1.2 | . . . 4 ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) | |
7 | 1, 2, 3, 6, 5 | fltabcoprm 40217 | . . 3 ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) |
8 | flt4lem1.1 | . . 3 ⊢ (𝜑 → ¬ 2 ∥ 𝐴) | |
9 | 7, 8 | jca 515 | . 2 ⊢ (𝜑 → ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) |
10 | 4, 5, 9 | 3jca 1130 | 1 ⊢ (𝜑 → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2112 class class class wbr 5069 (class class class)co 7234 1c1 10757 + caddc 10759 ℕcn 11857 2c2 11912 ↑cexp 13664 ∥ cdvds 15845 gcd cgcd 16083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-cnex 10812 ax-resscn 10813 ax-1cn 10814 ax-icn 10815 ax-addcl 10816 ax-addrcl 10817 ax-mulcl 10818 ax-mulrcl 10819 ax-mulcom 10820 ax-addass 10821 ax-mulass 10822 ax-distr 10823 ax-i2m1 10824 ax-1ne0 10825 ax-1rid 10826 ax-rnegex 10827 ax-rrecex 10828 ax-cnre 10829 ax-pre-lttri 10830 ax-pre-lttrn 10831 ax-pre-ltadd 10832 ax-pre-mulgt0 10833 ax-pre-sup 10834 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3711 df-csb 3828 df-dif 3885 df-un 3887 df-in 3889 df-ss 3899 df-pss 3901 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-iun 4922 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-om 7666 df-2nd 7783 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-er 8414 df-en 8650 df-dom 8651 df-sdom 8652 df-sup 9085 df-inf 9086 df-pnf 10896 df-mnf 10897 df-xr 10898 df-ltxr 10899 df-le 10900 df-sub 11091 df-neg 11092 df-div 11517 df-nn 11858 df-2 11920 df-3 11921 df-n0 12118 df-z 12204 df-uz 12466 df-rp 12614 df-fl 13394 df-mod 13472 df-seq 13604 df-exp 13665 df-cj 14692 df-re 14693 df-im 14694 df-sqrt 14828 df-abs 14829 df-dvds 15846 df-gcd 16084 |
This theorem is referenced by: flt4lem3 40223 flt4lem5a 40227 flt4lem5b 40228 flt4lem5c 40229 flt4lem5d 40230 flt4lem5e 40231 |
Copyright terms: Public domain | W3C validator |