Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem5a Structured version   Visualization version   GIF version

Theorem flt4lem5a 40027
Description: Part 1 of Equation 1 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 22-Aug-2024.)
Hypotheses
Ref Expression
flt4lem5a.m 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2)
flt4lem5a.n 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2)
flt4lem5a.r 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀𝑁))) / 2)
flt4lem5a.s 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀𝑁))) / 2)
flt4lem5a.a (𝜑𝐴 ∈ ℕ)
flt4lem5a.b (𝜑𝐵 ∈ ℕ)
flt4lem5a.c (𝜑𝐶 ∈ ℕ)
flt4lem5a.1 (𝜑 → ¬ 2 ∥ 𝐴)
flt4lem5a.2 (𝜑 → (𝐴 gcd 𝐶) = 1)
flt4lem5a.3 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
Assertion
Ref Expression
flt4lem5a (𝜑 → ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2))

Proof of Theorem flt4lem5a
StepHypRef Expression
1 flt4lem5a.a . . . . . . 7 (𝜑𝐴 ∈ ℕ)
21nnsqcld 13669 . . . . . 6 (𝜑 → (𝐴↑2) ∈ ℕ)
3 flt4lem5a.b . . . . . . 7 (𝜑𝐵 ∈ ℕ)
43nnsqcld 13669 . . . . . 6 (𝜑 → (𝐵↑2) ∈ ℕ)
5 flt4lem5a.c . . . . . 6 (𝜑𝐶 ∈ ℕ)
6 flt4lem5a.1 . . . . . . 7 (𝜑 → ¬ 2 ∥ 𝐴)
7 2prm 16103 . . . . . . . 8 2 ∈ ℙ
81nnzd 12139 . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
9 prmdvdssq 16129 . . . . . . . 8 ((2 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2)))
107, 8, 9sylancr 590 . . . . . . 7 (𝜑 → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2)))
116, 10mtbid 327 . . . . . 6 (𝜑 → ¬ 2 ∥ (𝐴↑2))
12 flt4lem5a.2 . . . . . . 7 (𝜑 → (𝐴 gcd 𝐶) = 1)
13 2nn 11761 . . . . . . . . 9 2 ∈ ℕ
1413a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℕ)
15 rplpwr 15973 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 2 ∈ ℕ) → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1))
161, 5, 14, 15syl3anc 1369 . . . . . . 7 (𝜑 → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1))
1712, 16mpd 15 . . . . . 6 (𝜑 → ((𝐴↑2) gcd 𝐶) = 1)
181nncnd 11704 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
1918flt4lem 40020 . . . . . . . 8 (𝜑 → (𝐴↑4) = ((𝐴↑2)↑2))
203nncnd 11704 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
2120flt4lem 40020 . . . . . . . 8 (𝜑 → (𝐵↑4) = ((𝐵↑2)↑2))
2219, 21oveq12d 7175 . . . . . . 7 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (((𝐴↑2)↑2) + ((𝐵↑2)↑2)))
23 flt4lem5a.3 . . . . . . 7 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
2422, 23eqtr3d 2796 . . . . . 6 (𝜑 → (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2))
252, 4, 5, 11, 17, 24flt4lem1 40021 . . . . 5 (𝜑 → (((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))))
26 flt4lem5a.m . . . . . 6 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2)
2726pythagtriplem11 16232 . . . . 5 ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑀 ∈ ℕ)
2825, 27syl 17 . . . 4 (𝜑𝑀 ∈ ℕ)
2928nnsqcld 13669 . . 3 (𝜑 → (𝑀↑2) ∈ ℕ)
3029nncnd 11704 . 2 (𝜑 → (𝑀↑2) ∈ ℂ)
31 flt4lem5a.n . . . . . 6 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2)
3231pythagtriplem13 16234 . . . . 5 ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑁 ∈ ℕ)
3325, 32syl 17 . . . 4 (𝜑𝑁 ∈ ℕ)
3433nnsqcld 13669 . . 3 (𝜑 → (𝑁↑2) ∈ ℕ)
3534nncnd 11704 . 2 (𝜑 → (𝑁↑2) ∈ ℂ)
3626, 31pythagtriplem15 16236 . . 3 ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → (𝐴↑2) = ((𝑀↑2) − (𝑁↑2)))
3725, 36syl 17 . 2 (𝜑 → (𝐴↑2) = ((𝑀↑2) − (𝑁↑2)))
3830, 35, 37mvrrsubd 39845 1 (𝜑 → ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1085   = wceq 1539  wcel 2112   class class class wbr 5037  cfv 6341  (class class class)co 7157  1c1 10590   + caddc 10592  cmin 10922   / cdiv 11349  cn 11688  2c2 11743  4c4 11745  cz 12034  cexp 13493  csqrt 14654  cdvds 15669   gcd cgcd 15907  cprime 16082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666  ax-pre-sup 10667
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-om 7587  df-1st 7700  df-2nd 7701  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-1o 8119  df-2o 8120  df-er 8306  df-en 8542  df-dom 8543  df-sdom 8544  df-fin 8545  df-sup 8953  df-inf 8954  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-div 11350  df-nn 11689  df-2 11751  df-3 11752  df-4 11753  df-n0 11949  df-z 12035  df-uz 12297  df-rp 12445  df-fz 12954  df-fl 13225  df-mod 13301  df-seq 13433  df-exp 13494  df-cj 14520  df-re 14521  df-im 14522  df-sqrt 14656  df-abs 14657  df-dvds 15670  df-gcd 15908  df-prm 16083
This theorem is referenced by:  flt4lem5c  40029  flt4lem5d  40030  flt4lem5e  40031
  Copyright terms: Public domain W3C validator