![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > flt4lem5a | Structured version Visualization version GIF version |
Description: Part 1 of Equation 1 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 22-Aug-2024.) |
Ref | Expression |
---|---|
flt4lem5a.m | ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) |
flt4lem5a.n | ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) |
flt4lem5a.r | ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) |
flt4lem5a.s | ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) |
flt4lem5a.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
flt4lem5a.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
flt4lem5a.c | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
flt4lem5a.1 | ⊢ (𝜑 → ¬ 2 ∥ 𝐴) |
flt4lem5a.2 | ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) |
flt4lem5a.3 | ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) |
Ref | Expression |
---|---|
flt4lem5a | ⊢ (𝜑 → ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flt4lem5a.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | 1 | nnsqcld 14203 | . . . . . 6 ⊢ (𝜑 → (𝐴↑2) ∈ ℕ) |
3 | flt4lem5a.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
4 | 3 | nnsqcld 14203 | . . . . . 6 ⊢ (𝜑 → (𝐵↑2) ∈ ℕ) |
5 | flt4lem5a.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
6 | flt4lem5a.1 | . . . . . . 7 ⊢ (𝜑 → ¬ 2 ∥ 𝐴) | |
7 | 2prm 16625 | . . . . . . . 8 ⊢ 2 ∈ ℙ | |
8 | 1 | nnzd 12581 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
9 | prmdvdssq 16651 | . . . . . . . 8 ⊢ ((2 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2))) | |
10 | 7, 8, 9 | sylancr 587 | . . . . . . 7 ⊢ (𝜑 → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2))) |
11 | 6, 10 | mtbid 323 | . . . . . 6 ⊢ (𝜑 → ¬ 2 ∥ (𝐴↑2)) |
12 | flt4lem5a.2 | . . . . . . 7 ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) | |
13 | 2nn 12281 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
14 | 13 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 2 ∈ ℕ) |
15 | rplpwr 16495 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 2 ∈ ℕ) → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1)) | |
16 | 1, 5, 14, 15 | syl3anc 1371 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1)) |
17 | 12, 16 | mpd 15 | . . . . . 6 ⊢ (𝜑 → ((𝐴↑2) gcd 𝐶) = 1) |
18 | 1 | nncnd 12224 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
19 | 18 | flt4lem 41383 | . . . . . . . 8 ⊢ (𝜑 → (𝐴↑4) = ((𝐴↑2)↑2)) |
20 | 3 | nncnd 12224 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
21 | 20 | flt4lem 41383 | . . . . . . . 8 ⊢ (𝜑 → (𝐵↑4) = ((𝐵↑2)↑2)) |
22 | 19, 21 | oveq12d 7423 | . . . . . . 7 ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (((𝐴↑2)↑2) + ((𝐵↑2)↑2))) |
23 | flt4lem5a.3 | . . . . . . 7 ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) | |
24 | 22, 23 | eqtr3d 2774 | . . . . . 6 ⊢ (𝜑 → (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2)) |
25 | 2, 4, 5, 11, 17, 24 | flt4lem1 41384 | . . . . 5 ⊢ (𝜑 → (((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2)))) |
26 | flt4lem5a.m | . . . . . 6 ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) | |
27 | 26 | pythagtriplem11 16754 | . . . . 5 ⊢ ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑀 ∈ ℕ) |
28 | 25, 27 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
29 | 28 | nnsqcld 14203 | . . 3 ⊢ (𝜑 → (𝑀↑2) ∈ ℕ) |
30 | 29 | nncnd 12224 | . 2 ⊢ (𝜑 → (𝑀↑2) ∈ ℂ) |
31 | flt4lem5a.n | . . . . . 6 ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) | |
32 | 31 | pythagtriplem13 16756 | . . . . 5 ⊢ ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑁 ∈ ℕ) |
33 | 25, 32 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
34 | 33 | nnsqcld 14203 | . . 3 ⊢ (𝜑 → (𝑁↑2) ∈ ℕ) |
35 | 34 | nncnd 12224 | . 2 ⊢ (𝜑 → (𝑁↑2) ∈ ℂ) |
36 | 26, 31 | pythagtriplem15 16758 | . . 3 ⊢ ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → (𝐴↑2) = ((𝑀↑2) − (𝑁↑2))) |
37 | 25, 36 | syl 17 | . 2 ⊢ (𝜑 → (𝐴↑2) = ((𝑀↑2) − (𝑁↑2))) |
38 | 30, 35, 37 | mvrrsubd 41184 | 1 ⊢ (𝜑 → ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 class class class wbr 5147 ‘cfv 6540 (class class class)co 7405 1c1 11107 + caddc 11109 − cmin 11440 / cdiv 11867 ℕcn 12208 2c2 12263 4c4 12265 ℤcz 12554 ↑cexp 14023 √csqrt 15176 ∥ cdvds 16193 gcd cgcd 16431 ℙcprime 16604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-dvds 16194 df-gcd 16432 df-prm 16605 |
This theorem is referenced by: flt4lem5c 41392 flt4lem5d 41393 flt4lem5e 41394 |
Copyright terms: Public domain | W3C validator |