| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > flt4lem5a | Structured version Visualization version GIF version | ||
| Description: Part 1 of Equation 1 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 22-Aug-2024.) |
| Ref | Expression |
|---|---|
| flt4lem5a.m | ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) |
| flt4lem5a.n | ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) |
| flt4lem5a.r | ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) |
| flt4lem5a.s | ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) |
| flt4lem5a.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| flt4lem5a.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
| flt4lem5a.c | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
| flt4lem5a.1 | ⊢ (𝜑 → ¬ 2 ∥ 𝐴) |
| flt4lem5a.2 | ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) |
| flt4lem5a.3 | ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) |
| Ref | Expression |
|---|---|
| flt4lem5a | ⊢ (𝜑 → ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flt4lem5a.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | 1 | nnsqcld 14151 | . . . . . 6 ⊢ (𝜑 → (𝐴↑2) ∈ ℕ) |
| 3 | flt4lem5a.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
| 4 | 3 | nnsqcld 14151 | . . . . . 6 ⊢ (𝜑 → (𝐵↑2) ∈ ℕ) |
| 5 | flt4lem5a.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
| 6 | flt4lem5a.1 | . . . . . . 7 ⊢ (𝜑 → ¬ 2 ∥ 𝐴) | |
| 7 | 2prm 16603 | . . . . . . . 8 ⊢ 2 ∈ ℙ | |
| 8 | 1 | nnzd 12495 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 9 | prmdvdssq 16629 | . . . . . . . 8 ⊢ ((2 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2))) | |
| 10 | 7, 8, 9 | sylancr 587 | . . . . . . 7 ⊢ (𝜑 → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2))) |
| 11 | 6, 10 | mtbid 324 | . . . . . 6 ⊢ (𝜑 → ¬ 2 ∥ (𝐴↑2)) |
| 12 | flt4lem5a.2 | . . . . . . 7 ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) | |
| 13 | 2nn 12198 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
| 14 | 13 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 2 ∈ ℕ) |
| 15 | rplpwr 16469 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 2 ∈ ℕ) → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1)) | |
| 16 | 1, 5, 14, 15 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1)) |
| 17 | 12, 16 | mpd 15 | . . . . . 6 ⊢ (𝜑 → ((𝐴↑2) gcd 𝐶) = 1) |
| 18 | 1 | nncnd 12141 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 19 | 18 | flt4lem 42684 | . . . . . . . 8 ⊢ (𝜑 → (𝐴↑4) = ((𝐴↑2)↑2)) |
| 20 | 3 | nncnd 12141 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 21 | 20 | flt4lem 42684 | . . . . . . . 8 ⊢ (𝜑 → (𝐵↑4) = ((𝐵↑2)↑2)) |
| 22 | 19, 21 | oveq12d 7364 | . . . . . . 7 ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (((𝐴↑2)↑2) + ((𝐵↑2)↑2))) |
| 23 | flt4lem5a.3 | . . . . . . 7 ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) | |
| 24 | 22, 23 | eqtr3d 2768 | . . . . . 6 ⊢ (𝜑 → (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2)) |
| 25 | 2, 4, 5, 11, 17, 24 | flt4lem1 42685 | . . . . 5 ⊢ (𝜑 → (((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2)))) |
| 26 | flt4lem5a.m | . . . . . 6 ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) | |
| 27 | 26 | pythagtriplem11 16737 | . . . . 5 ⊢ ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑀 ∈ ℕ) |
| 28 | 25, 27 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 29 | 28 | nnsqcld 14151 | . . 3 ⊢ (𝜑 → (𝑀↑2) ∈ ℕ) |
| 30 | 29 | nncnd 12141 | . 2 ⊢ (𝜑 → (𝑀↑2) ∈ ℂ) |
| 31 | flt4lem5a.n | . . . . . 6 ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) | |
| 32 | 31 | pythagtriplem13 16739 | . . . . 5 ⊢ ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑁 ∈ ℕ) |
| 33 | 25, 32 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 34 | 33 | nnsqcld 14151 | . . 3 ⊢ (𝜑 → (𝑁↑2) ∈ ℕ) |
| 35 | 34 | nncnd 12141 | . 2 ⊢ (𝜑 → (𝑁↑2) ∈ ℂ) |
| 36 | 26, 31 | pythagtriplem15 16741 | . . 3 ⊢ ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → (𝐴↑2) = ((𝑀↑2) − (𝑁↑2))) |
| 37 | 25, 36 | syl 17 | . 2 ⊢ (𝜑 → (𝐴↑2) = ((𝑀↑2) − (𝑁↑2))) |
| 38 | 30, 35, 37 | mvrrsubd 42313 | 1 ⊢ (𝜑 → ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 1c1 11007 + caddc 11009 − cmin 11344 / cdiv 11774 ℕcn 12125 2c2 12180 4c4 12182 ℤcz 12468 ↑cexp 13968 √csqrt 15140 ∥ cdvds 16163 gcd cgcd 16405 ℙcprime 16582 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 df-prm 16583 |
| This theorem is referenced by: flt4lem5c 42693 flt4lem5d 42694 flt4lem5e 42695 |
| Copyright terms: Public domain | W3C validator |