Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > flt4lem5a | Structured version Visualization version GIF version |
Description: Part 1 of Equation 1 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 22-Aug-2024.) |
Ref | Expression |
---|---|
flt4lem5a.m | ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) |
flt4lem5a.n | ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) |
flt4lem5a.r | ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) |
flt4lem5a.s | ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) |
flt4lem5a.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
flt4lem5a.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
flt4lem5a.c | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
flt4lem5a.1 | ⊢ (𝜑 → ¬ 2 ∥ 𝐴) |
flt4lem5a.2 | ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) |
flt4lem5a.3 | ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) |
Ref | Expression |
---|---|
flt4lem5a | ⊢ (𝜑 → ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flt4lem5a.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | 1 | nnsqcld 13959 | . . . . . 6 ⊢ (𝜑 → (𝐴↑2) ∈ ℕ) |
3 | flt4lem5a.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
4 | 3 | nnsqcld 13959 | . . . . . 6 ⊢ (𝜑 → (𝐵↑2) ∈ ℕ) |
5 | flt4lem5a.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
6 | flt4lem5a.1 | . . . . . . 7 ⊢ (𝜑 → ¬ 2 ∥ 𝐴) | |
7 | 2prm 16397 | . . . . . . . 8 ⊢ 2 ∈ ℙ | |
8 | 1 | nnzd 12425 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
9 | prmdvdssq 16423 | . . . . . . . 8 ⊢ ((2 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2))) | |
10 | 7, 8, 9 | sylancr 587 | . . . . . . 7 ⊢ (𝜑 → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2))) |
11 | 6, 10 | mtbid 324 | . . . . . 6 ⊢ (𝜑 → ¬ 2 ∥ (𝐴↑2)) |
12 | flt4lem5a.2 | . . . . . . 7 ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) | |
13 | 2nn 12046 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
14 | 13 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 2 ∈ ℕ) |
15 | rplpwr 16267 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 2 ∈ ℕ) → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1)) | |
16 | 1, 5, 14, 15 | syl3anc 1370 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1)) |
17 | 12, 16 | mpd 15 | . . . . . 6 ⊢ (𝜑 → ((𝐴↑2) gcd 𝐶) = 1) |
18 | 1 | nncnd 11989 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
19 | 18 | flt4lem 40482 | . . . . . . . 8 ⊢ (𝜑 → (𝐴↑4) = ((𝐴↑2)↑2)) |
20 | 3 | nncnd 11989 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
21 | 20 | flt4lem 40482 | . . . . . . . 8 ⊢ (𝜑 → (𝐵↑4) = ((𝐵↑2)↑2)) |
22 | 19, 21 | oveq12d 7293 | . . . . . . 7 ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (((𝐴↑2)↑2) + ((𝐵↑2)↑2))) |
23 | flt4lem5a.3 | . . . . . . 7 ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) | |
24 | 22, 23 | eqtr3d 2780 | . . . . . 6 ⊢ (𝜑 → (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2)) |
25 | 2, 4, 5, 11, 17, 24 | flt4lem1 40483 | . . . . 5 ⊢ (𝜑 → (((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2)))) |
26 | flt4lem5a.m | . . . . . 6 ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) | |
27 | 26 | pythagtriplem11 16526 | . . . . 5 ⊢ ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑀 ∈ ℕ) |
28 | 25, 27 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
29 | 28 | nnsqcld 13959 | . . 3 ⊢ (𝜑 → (𝑀↑2) ∈ ℕ) |
30 | 29 | nncnd 11989 | . 2 ⊢ (𝜑 → (𝑀↑2) ∈ ℂ) |
31 | flt4lem5a.n | . . . . . 6 ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) | |
32 | 31 | pythagtriplem13 16528 | . . . . 5 ⊢ ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑁 ∈ ℕ) |
33 | 25, 32 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
34 | 33 | nnsqcld 13959 | . . 3 ⊢ (𝜑 → (𝑁↑2) ∈ ℕ) |
35 | 34 | nncnd 11989 | . 2 ⊢ (𝜑 → (𝑁↑2) ∈ ℂ) |
36 | 26, 31 | pythagtriplem15 16530 | . . 3 ⊢ ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → (𝐴↑2) = ((𝑀↑2) − (𝑁↑2))) |
37 | 25, 36 | syl 17 | . 2 ⊢ (𝜑 → (𝐴↑2) = ((𝑀↑2) − (𝑁↑2))) |
38 | 30, 35, 37 | mvrrsubd 40303 | 1 ⊢ (𝜑 → ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 1c1 10872 + caddc 10874 − cmin 11205 / cdiv 11632 ℕcn 11973 2c2 12028 4c4 12030 ℤcz 12319 ↑cexp 13782 √csqrt 14944 ∥ cdvds 15963 gcd cgcd 16201 ℙcprime 16376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-dvds 15964 df-gcd 16202 df-prm 16377 |
This theorem is referenced by: flt4lem5c 40491 flt4lem5d 40492 flt4lem5e 40493 |
Copyright terms: Public domain | W3C validator |