![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > flt4lem5a | Structured version Visualization version GIF version |
Description: Part 1 of Equation 1 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 22-Aug-2024.) |
Ref | Expression |
---|---|
flt4lem5a.m | ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) |
flt4lem5a.n | ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) |
flt4lem5a.r | ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) |
flt4lem5a.s | ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) |
flt4lem5a.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
flt4lem5a.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
flt4lem5a.c | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
flt4lem5a.1 | ⊢ (𝜑 → ¬ 2 ∥ 𝐴) |
flt4lem5a.2 | ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) |
flt4lem5a.3 | ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) |
Ref | Expression |
---|---|
flt4lem5a | ⊢ (𝜑 → ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flt4lem5a.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | 1 | nnsqcld 14212 | . . . . . 6 ⊢ (𝜑 → (𝐴↑2) ∈ ℕ) |
3 | flt4lem5a.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
4 | 3 | nnsqcld 14212 | . . . . . 6 ⊢ (𝜑 → (𝐵↑2) ∈ ℕ) |
5 | flt4lem5a.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
6 | flt4lem5a.1 | . . . . . . 7 ⊢ (𝜑 → ¬ 2 ∥ 𝐴) | |
7 | 2prm 16636 | . . . . . . . 8 ⊢ 2 ∈ ℙ | |
8 | 1 | nnzd 12589 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
9 | prmdvdssq 16662 | . . . . . . . 8 ⊢ ((2 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2))) | |
10 | 7, 8, 9 | sylancr 586 | . . . . . . 7 ⊢ (𝜑 → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2))) |
11 | 6, 10 | mtbid 324 | . . . . . 6 ⊢ (𝜑 → ¬ 2 ∥ (𝐴↑2)) |
12 | flt4lem5a.2 | . . . . . . 7 ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) | |
13 | 2nn 12289 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
14 | 13 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 2 ∈ ℕ) |
15 | rplpwr 16506 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 2 ∈ ℕ) → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1)) | |
16 | 1, 5, 14, 15 | syl3anc 1368 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1)) |
17 | 12, 16 | mpd 15 | . . . . . 6 ⊢ (𝜑 → ((𝐴↑2) gcd 𝐶) = 1) |
18 | 1 | nncnd 12232 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
19 | 18 | flt4lem 41965 | . . . . . . . 8 ⊢ (𝜑 → (𝐴↑4) = ((𝐴↑2)↑2)) |
20 | 3 | nncnd 12232 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
21 | 20 | flt4lem 41965 | . . . . . . . 8 ⊢ (𝜑 → (𝐵↑4) = ((𝐵↑2)↑2)) |
22 | 19, 21 | oveq12d 7423 | . . . . . . 7 ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (((𝐴↑2)↑2) + ((𝐵↑2)↑2))) |
23 | flt4lem5a.3 | . . . . . . 7 ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) | |
24 | 22, 23 | eqtr3d 2768 | . . . . . 6 ⊢ (𝜑 → (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2)) |
25 | 2, 4, 5, 11, 17, 24 | flt4lem1 41966 | . . . . 5 ⊢ (𝜑 → (((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2)))) |
26 | flt4lem5a.m | . . . . . 6 ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) | |
27 | 26 | pythagtriplem11 16767 | . . . . 5 ⊢ ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑀 ∈ ℕ) |
28 | 25, 27 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
29 | 28 | nnsqcld 14212 | . . 3 ⊢ (𝜑 → (𝑀↑2) ∈ ℕ) |
30 | 29 | nncnd 12232 | . 2 ⊢ (𝜑 → (𝑀↑2) ∈ ℂ) |
31 | flt4lem5a.n | . . . . . 6 ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) | |
32 | 31 | pythagtriplem13 16769 | . . . . 5 ⊢ ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑁 ∈ ℕ) |
33 | 25, 32 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
34 | 33 | nnsqcld 14212 | . . 3 ⊢ (𝜑 → (𝑁↑2) ∈ ℕ) |
35 | 34 | nncnd 12232 | . 2 ⊢ (𝜑 → (𝑁↑2) ∈ ℂ) |
36 | 26, 31 | pythagtriplem15 16771 | . . 3 ⊢ ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → (𝐴↑2) = ((𝑀↑2) − (𝑁↑2))) |
37 | 25, 36 | syl 17 | . 2 ⊢ (𝜑 → (𝐴↑2) = ((𝑀↑2) − (𝑁↑2))) |
38 | 30, 35, 37 | mvrrsubd 41745 | 1 ⊢ (𝜑 → ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 class class class wbr 5141 ‘cfv 6537 (class class class)co 7405 1c1 11113 + caddc 11115 − cmin 11448 / cdiv 11875 ℕcn 12216 2c2 12271 4c4 12273 ℤcz 12562 ↑cexp 14032 √csqrt 15186 ∥ cdvds 16204 gcd cgcd 16442 ℙcprime 16615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-2o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12981 df-fz 13491 df-fl 13763 df-mod 13841 df-seq 13973 df-exp 14033 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-dvds 16205 df-gcd 16443 df-prm 16616 |
This theorem is referenced by: flt4lem5c 41974 flt4lem5d 41975 flt4lem5e 41976 |
Copyright terms: Public domain | W3C validator |