MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1ae0 Structured version   Visualization version   GIF version

Theorem coe1ae0 22166
Description: The coefficient vector of a univariate polynomial is 0 almost everywhere. (Contributed by AV, 19-Oct-2019.)
Hypotheses
Ref Expression
coe1ae0.a 𝐴 = (coe1𝐹)
coe1ae0.b 𝐵 = (Base‘𝑃)
coe1ae0.p 𝑃 = (Poly1𝑅)
coe1ae0.z 0 = (0g𝑅)
Assertion
Ref Expression
coe1ae0 (𝐹𝐵 → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴𝑛) = 0 ))
Distinct variable groups:   𝐴,𝑛,𝑠   0 ,𝑛,𝑠
Allowed substitution hints:   𝐵(𝑛,𝑠)   𝑃(𝑛,𝑠)   𝑅(𝑛,𝑠)   𝐹(𝑛,𝑠)

Proof of Theorem coe1ae0
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 coe1ae0.a . . 3 𝐴 = (coe1𝐹)
2 coe1ae0.b . . 3 𝐵 = (Base‘𝑃)
3 coe1ae0.p . . 3 𝑃 = (Poly1𝑅)
4 coe1ae0.z . . 3 0 = (0g𝑅)
5 eqid 2734 . . 3 (Base‘𝑅) = (Base‘𝑅)
61, 2, 3, 4, 5coe1fsupp 22164 . 2 (𝐹𝐵𝐴 ∈ {𝑎 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑎 finSupp 0 })
7 breq1 5126 . . . 4 (𝑎 = 𝐴 → (𝑎 finSupp 0𝐴 finSupp 0 ))
87elrab 3675 . . 3 (𝐴 ∈ {𝑎 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑎 finSupp 0 } ↔ (𝐴 ∈ ((Base‘𝑅) ↑m0) ∧ 𝐴 finSupp 0 ))
94fvexi 6900 . . . . . 6 0 ∈ V
109a1i 11 . . . . 5 (𝐹𝐵0 ∈ V)
11 fsuppmapnn0ub 14018 . . . . 5 ((𝐴 ∈ ((Base‘𝑅) ↑m0) ∧ 0 ∈ V) → (𝐴 finSupp 0 → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴𝑛) = 0 )))
1210, 11sylan2 593 . . . 4 ((𝐴 ∈ ((Base‘𝑅) ↑m0) ∧ 𝐹𝐵) → (𝐴 finSupp 0 → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴𝑛) = 0 )))
1312impancom 451 . . 3 ((𝐴 ∈ ((Base‘𝑅) ↑m0) ∧ 𝐴 finSupp 0 ) → (𝐹𝐵 → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴𝑛) = 0 )))
148, 13sylbi 217 . 2 (𝐴 ∈ {𝑎 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑎 finSupp 0 } → (𝐹𝐵 → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴𝑛) = 0 )))
156, 14mpcom 38 1 (𝐹𝐵 → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴𝑛) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050  wrex 3059  {crab 3419  Vcvv 3463   class class class wbr 5123  cfv 6541  (class class class)co 7413  m cmap 8848   finSupp cfsupp 9383   < clt 11277  0cn0 12509  Basecbs 17229  0gc0g 17455  Poly1cpl1 22126  coe1cco1 22127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-sca 17289  df-vsca 17290  df-tset 17292  df-ple 17293  df-psr 21883  df-mpl 21885  df-opsr 21887  df-psr1 22129  df-ply1 22131  df-coe1 22132
This theorem is referenced by:  evls1fpws  22321  pmatcollpw1lem1  22728  ply1mulgsumlem1  48261
  Copyright terms: Public domain W3C validator