| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1ae0 | Structured version Visualization version GIF version | ||
| Description: The coefficient vector of a univariate polynomial is 0 almost everywhere. (Contributed by AV, 19-Oct-2019.) |
| Ref | Expression |
|---|---|
| coe1ae0.a | ⊢ 𝐴 = (coe1‘𝐹) |
| coe1ae0.b | ⊢ 𝐵 = (Base‘𝑃) |
| coe1ae0.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| coe1ae0.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| coe1ae0 | ⊢ (𝐹 ∈ 𝐵 → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴‘𝑛) = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1ae0.a | . . 3 ⊢ 𝐴 = (coe1‘𝐹) | |
| 2 | coe1ae0.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 3 | coe1ae0.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | coe1ae0.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 5 | eqid 2737 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | 1, 2, 3, 4, 5 | coe1fsupp 22216 | . 2 ⊢ (𝐹 ∈ 𝐵 → 𝐴 ∈ {𝑎 ∈ ((Base‘𝑅) ↑m ℕ0) ∣ 𝑎 finSupp 0 }) |
| 7 | breq1 5146 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑎 finSupp 0 ↔ 𝐴 finSupp 0 )) | |
| 8 | 7 | elrab 3692 | . . 3 ⊢ (𝐴 ∈ {𝑎 ∈ ((Base‘𝑅) ↑m ℕ0) ∣ 𝑎 finSupp 0 } ↔ (𝐴 ∈ ((Base‘𝑅) ↑m ℕ0) ∧ 𝐴 finSupp 0 )) |
| 9 | 4 | fvexi 6920 | . . . . . 6 ⊢ 0 ∈ V |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → 0 ∈ V) |
| 11 | fsuppmapnn0ub 14036 | . . . . 5 ⊢ ((𝐴 ∈ ((Base‘𝑅) ↑m ℕ0) ∧ 0 ∈ V) → (𝐴 finSupp 0 → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴‘𝑛) = 0 ))) | |
| 12 | 10, 11 | sylan2 593 | . . . 4 ⊢ ((𝐴 ∈ ((Base‘𝑅) ↑m ℕ0) ∧ 𝐹 ∈ 𝐵) → (𝐴 finSupp 0 → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴‘𝑛) = 0 ))) |
| 13 | 12 | impancom 451 | . . 3 ⊢ ((𝐴 ∈ ((Base‘𝑅) ↑m ℕ0) ∧ 𝐴 finSupp 0 ) → (𝐹 ∈ 𝐵 → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴‘𝑛) = 0 ))) |
| 14 | 8, 13 | sylbi 217 | . 2 ⊢ (𝐴 ∈ {𝑎 ∈ ((Base‘𝑅) ↑m ℕ0) ∣ 𝑎 finSupp 0 } → (𝐹 ∈ 𝐵 → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴‘𝑛) = 0 ))) |
| 15 | 6, 14 | mpcom 38 | 1 ⊢ (𝐹 ∈ 𝐵 → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴‘𝑛) = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 {crab 3436 Vcvv 3480 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 finSupp cfsupp 9401 < clt 11295 ℕ0cn0 12526 Basecbs 17247 0gc0g 17484 Poly1cpl1 22178 coe1cco1 22179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-tset 17316 df-ple 17317 df-psr 21929 df-mpl 21931 df-opsr 21933 df-psr1 22181 df-ply1 22183 df-coe1 22184 |
| This theorem is referenced by: evls1fpws 22373 pmatcollpw1lem1 22780 ply1mulgsumlem1 48303 |
| Copyright terms: Public domain | W3C validator |