![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1ae0 | Structured version Visualization version GIF version |
Description: The coefficient vector of a univariate polynomial is 0 almost everywhere. (Contributed by AV, 19-Oct-2019.) |
Ref | Expression |
---|---|
coe1ae0.a | ⊢ 𝐴 = (coe1‘𝐹) |
coe1ae0.b | ⊢ 𝐵 = (Base‘𝑃) |
coe1ae0.p | ⊢ 𝑃 = (Poly1‘𝑅) |
coe1ae0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
coe1ae0 | ⊢ (𝐹 ∈ 𝐵 → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴‘𝑛) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coe1ae0.a | . . 3 ⊢ 𝐴 = (coe1‘𝐹) | |
2 | coe1ae0.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
3 | coe1ae0.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | coe1ae0.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
5 | eqid 2731 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
6 | 1, 2, 3, 4, 5 | coe1fsupp 21667 | . 2 ⊢ (𝐹 ∈ 𝐵 → 𝐴 ∈ {𝑎 ∈ ((Base‘𝑅) ↑m ℕ0) ∣ 𝑎 finSupp 0 }) |
7 | breq1 5144 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑎 finSupp 0 ↔ 𝐴 finSupp 0 )) | |
8 | 7 | elrab 3679 | . . 3 ⊢ (𝐴 ∈ {𝑎 ∈ ((Base‘𝑅) ↑m ℕ0) ∣ 𝑎 finSupp 0 } ↔ (𝐴 ∈ ((Base‘𝑅) ↑m ℕ0) ∧ 𝐴 finSupp 0 )) |
9 | 4 | fvexi 6892 | . . . . . 6 ⊢ 0 ∈ V |
10 | 9 | a1i 11 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → 0 ∈ V) |
11 | fsuppmapnn0ub 13942 | . . . . 5 ⊢ ((𝐴 ∈ ((Base‘𝑅) ↑m ℕ0) ∧ 0 ∈ V) → (𝐴 finSupp 0 → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴‘𝑛) = 0 ))) | |
12 | 10, 11 | sylan2 593 | . . . 4 ⊢ ((𝐴 ∈ ((Base‘𝑅) ↑m ℕ0) ∧ 𝐹 ∈ 𝐵) → (𝐴 finSupp 0 → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴‘𝑛) = 0 ))) |
13 | 12 | impancom 452 | . . 3 ⊢ ((𝐴 ∈ ((Base‘𝑅) ↑m ℕ0) ∧ 𝐴 finSupp 0 ) → (𝐹 ∈ 𝐵 → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴‘𝑛) = 0 ))) |
14 | 8, 13 | sylbi 216 | . 2 ⊢ (𝐴 ∈ {𝑎 ∈ ((Base‘𝑅) ↑m ℕ0) ∣ 𝑎 finSupp 0 } → (𝐹 ∈ 𝐵 → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴‘𝑛) = 0 ))) |
15 | 6, 14 | mpcom 38 | 1 ⊢ (𝐹 ∈ 𝐵 → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴‘𝑛) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3060 ∃wrex 3069 {crab 3431 Vcvv 3473 class class class wbr 5141 ‘cfv 6532 (class class class)co 7393 ↑m cmap 8803 finSupp cfsupp 9344 < clt 11230 ℕ0cn0 12454 Basecbs 17126 0gc0g 17367 Poly1cpl1 21630 coe1cco1 21631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-of 7653 df-om 7839 df-1st 7957 df-2nd 7958 df-supp 8129 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-er 8686 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9345 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-2 12257 df-3 12258 df-4 12259 df-5 12260 df-6 12261 df-7 12262 df-8 12263 df-9 12264 df-n0 12455 df-z 12541 df-dec 12660 df-uz 12805 df-fz 13467 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17127 df-ress 17156 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-tset 17198 df-ple 17199 df-psr 21393 df-mpl 21395 df-opsr 21397 df-psr1 21633 df-ply1 21635 df-coe1 21636 |
This theorem is referenced by: pmatcollpw1lem1 22205 evls1fpws 32489 ply1mulgsumlem1 46715 |
Copyright terms: Public domain | W3C validator |