![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1ae0 | Structured version Visualization version GIF version |
Description: The coefficient vector of a univariate polynomial is 0 almost everywhere. (Contributed by AV, 19-Oct-2019.) |
Ref | Expression |
---|---|
coe1ae0.a | ⊢ 𝐴 = (coe1‘𝐹) |
coe1ae0.b | ⊢ 𝐵 = (Base‘𝑃) |
coe1ae0.p | ⊢ 𝑃 = (Poly1‘𝑅) |
coe1ae0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
coe1ae0 | ⊢ (𝐹 ∈ 𝐵 → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴‘𝑛) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coe1ae0.a | . . 3 ⊢ 𝐴 = (coe1‘𝐹) | |
2 | coe1ae0.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
3 | coe1ae0.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | coe1ae0.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
5 | eqid 2727 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
6 | 1, 2, 3, 4, 5 | coe1fsupp 22138 | . 2 ⊢ (𝐹 ∈ 𝐵 → 𝐴 ∈ {𝑎 ∈ ((Base‘𝑅) ↑m ℕ0) ∣ 𝑎 finSupp 0 }) |
7 | breq1 5153 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑎 finSupp 0 ↔ 𝐴 finSupp 0 )) | |
8 | 7 | elrab 3682 | . . 3 ⊢ (𝐴 ∈ {𝑎 ∈ ((Base‘𝑅) ↑m ℕ0) ∣ 𝑎 finSupp 0 } ↔ (𝐴 ∈ ((Base‘𝑅) ↑m ℕ0) ∧ 𝐴 finSupp 0 )) |
9 | 4 | fvexi 6914 | . . . . . 6 ⊢ 0 ∈ V |
10 | 9 | a1i 11 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → 0 ∈ V) |
11 | fsuppmapnn0ub 13998 | . . . . 5 ⊢ ((𝐴 ∈ ((Base‘𝑅) ↑m ℕ0) ∧ 0 ∈ V) → (𝐴 finSupp 0 → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴‘𝑛) = 0 ))) | |
12 | 10, 11 | sylan2 591 | . . . 4 ⊢ ((𝐴 ∈ ((Base‘𝑅) ↑m ℕ0) ∧ 𝐹 ∈ 𝐵) → (𝐴 finSupp 0 → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴‘𝑛) = 0 ))) |
13 | 12 | impancom 450 | . . 3 ⊢ ((𝐴 ∈ ((Base‘𝑅) ↑m ℕ0) ∧ 𝐴 finSupp 0 ) → (𝐹 ∈ 𝐵 → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴‘𝑛) = 0 ))) |
14 | 8, 13 | sylbi 216 | . 2 ⊢ (𝐴 ∈ {𝑎 ∈ ((Base‘𝑅) ↑m ℕ0) ∣ 𝑎 finSupp 0 } → (𝐹 ∈ 𝐵 → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴‘𝑛) = 0 ))) |
15 | 6, 14 | mpcom 38 | 1 ⊢ (𝐹 ∈ 𝐵 → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴‘𝑛) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3057 ∃wrex 3066 {crab 3428 Vcvv 3471 class class class wbr 5150 ‘cfv 6551 (class class class)co 7424 ↑m cmap 8849 finSupp cfsupp 9391 < clt 11284 ℕ0cn0 12508 Basecbs 17185 0gc0g 17426 Poly1cpl1 22101 coe1cco1 22102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7689 df-om 7875 df-1st 7997 df-2nd 7998 df-supp 8170 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-er 8729 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9392 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12509 df-z 12595 df-dec 12714 df-uz 12859 df-fz 13523 df-struct 17121 df-sets 17138 df-slot 17156 df-ndx 17168 df-base 17186 df-ress 17215 df-plusg 17251 df-mulr 17252 df-sca 17254 df-vsca 17255 df-tset 17257 df-ple 17258 df-psr 21847 df-mpl 21849 df-opsr 21851 df-psr1 22104 df-ply1 22106 df-coe1 22107 |
This theorem is referenced by: evls1fpws 22293 pmatcollpw1lem1 22694 ply1mulgsumlem1 47505 |
Copyright terms: Public domain | W3C validator |