![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fuccoval | Structured version Visualization version GIF version |
Description: Value of the functor category. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
fucco.q | โข ๐ = (๐ถ FuncCat ๐ท) |
fucco.n | โข ๐ = (๐ถ Nat ๐ท) |
fucco.a | โข ๐ด = (Baseโ๐ถ) |
fucco.o | โข ยท = (compโ๐ท) |
fucco.x | โข โ = (compโ๐) |
fucco.f | โข (๐ โ ๐ โ (๐น๐๐บ)) |
fucco.g | โข (๐ โ ๐ โ (๐บ๐๐ป)) |
fuccoval.f | โข (๐ โ ๐ โ ๐ด) |
Ref | Expression |
---|---|
fuccoval | โข (๐ โ ((๐(โจ๐น, ๐บโฉ โ ๐ป)๐ )โ๐) = ((๐โ๐)(โจ((1st โ๐น)โ๐), ((1st โ๐บ)โ๐)โฉ ยท ((1st โ๐ป)โ๐))(๐ โ๐))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fucco.q | . . 3 โข ๐ = (๐ถ FuncCat ๐ท) | |
2 | fucco.n | . . 3 โข ๐ = (๐ถ Nat ๐ท) | |
3 | fucco.a | . . 3 โข ๐ด = (Baseโ๐ถ) | |
4 | fucco.o | . . 3 โข ยท = (compโ๐ท) | |
5 | fucco.x | . . 3 โข โ = (compโ๐) | |
6 | fucco.f | . . 3 โข (๐ โ ๐ โ (๐น๐๐บ)) | |
7 | fucco.g | . . 3 โข (๐ โ ๐ โ (๐บ๐๐ป)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | fucco 17856 | . 2 โข (๐ โ (๐(โจ๐น, ๐บโฉ โ ๐ป)๐ ) = (๐ฅ โ ๐ด โฆ ((๐โ๐ฅ)(โจ((1st โ๐น)โ๐ฅ), ((1st โ๐บ)โ๐ฅ)โฉ ยท ((1st โ๐ป)โ๐ฅ))(๐ โ๐ฅ)))) |
9 | simpr 486 | . . . . . 6 โข ((๐ โง ๐ฅ = ๐) โ ๐ฅ = ๐) | |
10 | 9 | fveq2d 6847 | . . . . 5 โข ((๐ โง ๐ฅ = ๐) โ ((1st โ๐น)โ๐ฅ) = ((1st โ๐น)โ๐)) |
11 | 9 | fveq2d 6847 | . . . . 5 โข ((๐ โง ๐ฅ = ๐) โ ((1st โ๐บ)โ๐ฅ) = ((1st โ๐บ)โ๐)) |
12 | 10, 11 | opeq12d 4839 | . . . 4 โข ((๐ โง ๐ฅ = ๐) โ โจ((1st โ๐น)โ๐ฅ), ((1st โ๐บ)โ๐ฅ)โฉ = โจ((1st โ๐น)โ๐), ((1st โ๐บ)โ๐)โฉ) |
13 | 9 | fveq2d 6847 | . . . 4 โข ((๐ โง ๐ฅ = ๐) โ ((1st โ๐ป)โ๐ฅ) = ((1st โ๐ป)โ๐)) |
14 | 12, 13 | oveq12d 7376 | . . 3 โข ((๐ โง ๐ฅ = ๐) โ (โจ((1st โ๐น)โ๐ฅ), ((1st โ๐บ)โ๐ฅ)โฉ ยท ((1st โ๐ป)โ๐ฅ)) = (โจ((1st โ๐น)โ๐), ((1st โ๐บ)โ๐)โฉ ยท ((1st โ๐ป)โ๐))) |
15 | 9 | fveq2d 6847 | . . 3 โข ((๐ โง ๐ฅ = ๐) โ (๐โ๐ฅ) = (๐โ๐)) |
16 | 9 | fveq2d 6847 | . . 3 โข ((๐ โง ๐ฅ = ๐) โ (๐ โ๐ฅ) = (๐ โ๐)) |
17 | 14, 15, 16 | oveq123d 7379 | . 2 โข ((๐ โง ๐ฅ = ๐) โ ((๐โ๐ฅ)(โจ((1st โ๐น)โ๐ฅ), ((1st โ๐บ)โ๐ฅ)โฉ ยท ((1st โ๐ป)โ๐ฅ))(๐ โ๐ฅ)) = ((๐โ๐)(โจ((1st โ๐น)โ๐), ((1st โ๐บ)โ๐)โฉ ยท ((1st โ๐ป)โ๐))(๐ โ๐))) |
18 | fuccoval.f | . 2 โข (๐ โ ๐ โ ๐ด) | |
19 | ovexd 7393 | . 2 โข (๐ โ ((๐โ๐)(โจ((1st โ๐น)โ๐), ((1st โ๐บ)โ๐)โฉ ยท ((1st โ๐ป)โ๐))(๐ โ๐)) โ V) | |
20 | 8, 17, 18, 19 | fvmptd 6956 | 1 โข (๐ โ ((๐(โจ๐น, ๐บโฉ โ ๐ป)๐ )โ๐) = ((๐โ๐)(โจ((1st โ๐น)โ๐), ((1st โ๐บ)โ๐)โฉ ยท ((1st โ๐ป)โ๐))(๐ โ๐))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 397 = wceq 1542 โ wcel 2107 Vcvv 3444 โจcop 4593 โcfv 6497 (class class class)co 7358 1st c1st 7920 Basecbs 17088 compcco 17150 Nat cnat 17833 FuncCat cfuc 17834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-tp 4592 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8651 df-ixp 8839 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-nn 12159 df-2 12221 df-3 12222 df-4 12223 df-5 12224 df-6 12225 df-7 12226 df-8 12227 df-9 12228 df-n0 12419 df-z 12505 df-dec 12624 df-uz 12769 df-fz 13431 df-struct 17024 df-slot 17059 df-ndx 17071 df-base 17089 df-hom 17162 df-cco 17163 df-func 17749 df-nat 17835 df-fuc 17836 |
This theorem is referenced by: fuccocl 17858 fucass 17862 evlfcllem 18115 yonedalem3b 18173 |
Copyright terms: Public domain | W3C validator |