![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fuccoval | Structured version Visualization version GIF version |
Description: Value of the functor category. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
fucco.q | โข ๐ = (๐ถ FuncCat ๐ท) |
fucco.n | โข ๐ = (๐ถ Nat ๐ท) |
fucco.a | โข ๐ด = (Baseโ๐ถ) |
fucco.o | โข ยท = (compโ๐ท) |
fucco.x | โข โ = (compโ๐) |
fucco.f | โข (๐ โ ๐ โ (๐น๐๐บ)) |
fucco.g | โข (๐ โ ๐ โ (๐บ๐๐ป)) |
fuccoval.f | โข (๐ โ ๐ โ ๐ด) |
Ref | Expression |
---|---|
fuccoval | โข (๐ โ ((๐(โจ๐น, ๐บโฉ โ ๐ป)๐ )โ๐) = ((๐โ๐)(โจ((1st โ๐น)โ๐), ((1st โ๐บ)โ๐)โฉ ยท ((1st โ๐ป)โ๐))(๐ โ๐))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fucco.q | . . 3 โข ๐ = (๐ถ FuncCat ๐ท) | |
2 | fucco.n | . . 3 โข ๐ = (๐ถ Nat ๐ท) | |
3 | fucco.a | . . 3 โข ๐ด = (Baseโ๐ถ) | |
4 | fucco.o | . . 3 โข ยท = (compโ๐ท) | |
5 | fucco.x | . . 3 โข โ = (compโ๐) | |
6 | fucco.f | . . 3 โข (๐ โ ๐ โ (๐น๐๐บ)) | |
7 | fucco.g | . . 3 โข (๐ โ ๐ โ (๐บ๐๐ป)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | fucco 17963 | . 2 โข (๐ โ (๐(โจ๐น, ๐บโฉ โ ๐ป)๐ ) = (๐ฅ โ ๐ด โฆ ((๐โ๐ฅ)(โจ((1st โ๐น)โ๐ฅ), ((1st โ๐บ)โ๐ฅ)โฉ ยท ((1st โ๐ป)โ๐ฅ))(๐ โ๐ฅ)))) |
9 | simpr 483 | . . . . . 6 โข ((๐ โง ๐ฅ = ๐) โ ๐ฅ = ๐) | |
10 | 9 | fveq2d 6906 | . . . . 5 โข ((๐ โง ๐ฅ = ๐) โ ((1st โ๐น)โ๐ฅ) = ((1st โ๐น)โ๐)) |
11 | 9 | fveq2d 6906 | . . . . 5 โข ((๐ โง ๐ฅ = ๐) โ ((1st โ๐บ)โ๐ฅ) = ((1st โ๐บ)โ๐)) |
12 | 10, 11 | opeq12d 4886 | . . . 4 โข ((๐ โง ๐ฅ = ๐) โ โจ((1st โ๐น)โ๐ฅ), ((1st โ๐บ)โ๐ฅ)โฉ = โจ((1st โ๐น)โ๐), ((1st โ๐บ)โ๐)โฉ) |
13 | 9 | fveq2d 6906 | . . . 4 โข ((๐ โง ๐ฅ = ๐) โ ((1st โ๐ป)โ๐ฅ) = ((1st โ๐ป)โ๐)) |
14 | 12, 13 | oveq12d 7444 | . . 3 โข ((๐ โง ๐ฅ = ๐) โ (โจ((1st โ๐น)โ๐ฅ), ((1st โ๐บ)โ๐ฅ)โฉ ยท ((1st โ๐ป)โ๐ฅ)) = (โจ((1st โ๐น)โ๐), ((1st โ๐บ)โ๐)โฉ ยท ((1st โ๐ป)โ๐))) |
15 | 9 | fveq2d 6906 | . . 3 โข ((๐ โง ๐ฅ = ๐) โ (๐โ๐ฅ) = (๐โ๐)) |
16 | 9 | fveq2d 6906 | . . 3 โข ((๐ โง ๐ฅ = ๐) โ (๐ โ๐ฅ) = (๐ โ๐)) |
17 | 14, 15, 16 | oveq123d 7447 | . 2 โข ((๐ โง ๐ฅ = ๐) โ ((๐โ๐ฅ)(โจ((1st โ๐น)โ๐ฅ), ((1st โ๐บ)โ๐ฅ)โฉ ยท ((1st โ๐ป)โ๐ฅ))(๐ โ๐ฅ)) = ((๐โ๐)(โจ((1st โ๐น)โ๐), ((1st โ๐บ)โ๐)โฉ ยท ((1st โ๐ป)โ๐))(๐ โ๐))) |
18 | fuccoval.f | . 2 โข (๐ โ ๐ โ ๐ด) | |
19 | ovexd 7461 | . 2 โข (๐ โ ((๐โ๐)(โจ((1st โ๐น)โ๐), ((1st โ๐บ)โ๐)โฉ ยท ((1st โ๐ป)โ๐))(๐ โ๐)) โ V) | |
20 | 8, 17, 18, 19 | fvmptd 7017 | 1 โข (๐ โ ((๐(โจ๐น, ๐บโฉ โ ๐ป)๐ )โ๐) = ((๐โ๐)(โจ((1st โ๐น)โ๐), ((1st โ๐บ)โ๐)โฉ ยท ((1st โ๐ป)โ๐))(๐ โ๐))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 394 = wceq 1533 โ wcel 2098 Vcvv 3473 โจcop 4638 โcfv 6553 (class class class)co 7426 1st c1st 7999 Basecbs 17189 compcco 17254 Nat cnat 17940 FuncCat cfuc 17941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-er 8733 df-ixp 8925 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12253 df-2 12315 df-3 12316 df-4 12317 df-5 12318 df-6 12319 df-7 12320 df-8 12321 df-9 12322 df-n0 12513 df-z 12599 df-dec 12718 df-uz 12863 df-fz 13527 df-struct 17125 df-slot 17160 df-ndx 17172 df-base 17190 df-hom 17266 df-cco 17267 df-func 17853 df-nat 17942 df-fuc 17943 |
This theorem is referenced by: fuccocl 17965 fucass 17969 evlfcllem 18222 yonedalem3b 18280 |
Copyright terms: Public domain | W3C validator |