![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fuccoval | Structured version Visualization version GIF version |
Description: Value of the functor category. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
fucco.q | โข ๐ = (๐ถ FuncCat ๐ท) |
fucco.n | โข ๐ = (๐ถ Nat ๐ท) |
fucco.a | โข ๐ด = (Baseโ๐ถ) |
fucco.o | โข ยท = (compโ๐ท) |
fucco.x | โข โ = (compโ๐) |
fucco.f | โข (๐ โ ๐ โ (๐น๐๐บ)) |
fucco.g | โข (๐ โ ๐ โ (๐บ๐๐ป)) |
fuccoval.f | โข (๐ โ ๐ โ ๐ด) |
Ref | Expression |
---|---|
fuccoval | โข (๐ โ ((๐(โจ๐น, ๐บโฉ โ ๐ป)๐ )โ๐) = ((๐โ๐)(โจ((1st โ๐น)โ๐), ((1st โ๐บ)โ๐)โฉ ยท ((1st โ๐ป)โ๐))(๐ โ๐))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fucco.q | . . 3 โข ๐ = (๐ถ FuncCat ๐ท) | |
2 | fucco.n | . . 3 โข ๐ = (๐ถ Nat ๐ท) | |
3 | fucco.a | . . 3 โข ๐ด = (Baseโ๐ถ) | |
4 | fucco.o | . . 3 โข ยท = (compโ๐ท) | |
5 | fucco.x | . . 3 โข โ = (compโ๐) | |
6 | fucco.f | . . 3 โข (๐ โ ๐ โ (๐น๐๐บ)) | |
7 | fucco.g | . . 3 โข (๐ โ ๐ โ (๐บ๐๐ป)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | fucco 17915 | . 2 โข (๐ โ (๐(โจ๐น, ๐บโฉ โ ๐ป)๐ ) = (๐ฅ โ ๐ด โฆ ((๐โ๐ฅ)(โจ((1st โ๐น)โ๐ฅ), ((1st โ๐บ)โ๐ฅ)โฉ ยท ((1st โ๐ป)โ๐ฅ))(๐ โ๐ฅ)))) |
9 | simpr 486 | . . . . . 6 โข ((๐ โง ๐ฅ = ๐) โ ๐ฅ = ๐) | |
10 | 9 | fveq2d 6896 | . . . . 5 โข ((๐ โง ๐ฅ = ๐) โ ((1st โ๐น)โ๐ฅ) = ((1st โ๐น)โ๐)) |
11 | 9 | fveq2d 6896 | . . . . 5 โข ((๐ โง ๐ฅ = ๐) โ ((1st โ๐บ)โ๐ฅ) = ((1st โ๐บ)โ๐)) |
12 | 10, 11 | opeq12d 4882 | . . . 4 โข ((๐ โง ๐ฅ = ๐) โ โจ((1st โ๐น)โ๐ฅ), ((1st โ๐บ)โ๐ฅ)โฉ = โจ((1st โ๐น)โ๐), ((1st โ๐บ)โ๐)โฉ) |
13 | 9 | fveq2d 6896 | . . . 4 โข ((๐ โง ๐ฅ = ๐) โ ((1st โ๐ป)โ๐ฅ) = ((1st โ๐ป)โ๐)) |
14 | 12, 13 | oveq12d 7427 | . . 3 โข ((๐ โง ๐ฅ = ๐) โ (โจ((1st โ๐น)โ๐ฅ), ((1st โ๐บ)โ๐ฅ)โฉ ยท ((1st โ๐ป)โ๐ฅ)) = (โจ((1st โ๐น)โ๐), ((1st โ๐บ)โ๐)โฉ ยท ((1st โ๐ป)โ๐))) |
15 | 9 | fveq2d 6896 | . . 3 โข ((๐ โง ๐ฅ = ๐) โ (๐โ๐ฅ) = (๐โ๐)) |
16 | 9 | fveq2d 6896 | . . 3 โข ((๐ โง ๐ฅ = ๐) โ (๐ โ๐ฅ) = (๐ โ๐)) |
17 | 14, 15, 16 | oveq123d 7430 | . 2 โข ((๐ โง ๐ฅ = ๐) โ ((๐โ๐ฅ)(โจ((1st โ๐น)โ๐ฅ), ((1st โ๐บ)โ๐ฅ)โฉ ยท ((1st โ๐ป)โ๐ฅ))(๐ โ๐ฅ)) = ((๐โ๐)(โจ((1st โ๐น)โ๐), ((1st โ๐บ)โ๐)โฉ ยท ((1st โ๐ป)โ๐))(๐ โ๐))) |
18 | fuccoval.f | . 2 โข (๐ โ ๐ โ ๐ด) | |
19 | ovexd 7444 | . 2 โข (๐ โ ((๐โ๐)(โจ((1st โ๐น)โ๐), ((1st โ๐บ)โ๐)โฉ ยท ((1st โ๐ป)โ๐))(๐ โ๐)) โ V) | |
20 | 8, 17, 18, 19 | fvmptd 7006 | 1 โข (๐ โ ((๐(โจ๐น, ๐บโฉ โ ๐ป)๐ )โ๐) = ((๐โ๐)(โจ((1st โ๐น)โ๐), ((1st โ๐บ)โ๐)โฉ ยท ((1st โ๐ป)โ๐))(๐ โ๐))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 397 = wceq 1542 โ wcel 2107 Vcvv 3475 โจcop 4635 โcfv 6544 (class class class)co 7409 1st c1st 7973 Basecbs 17144 compcco 17209 Nat cnat 17892 FuncCat cfuc 17893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-struct 17080 df-slot 17115 df-ndx 17127 df-base 17145 df-hom 17221 df-cco 17222 df-func 17808 df-nat 17894 df-fuc 17895 |
This theorem is referenced by: fuccocl 17917 fucass 17921 evlfcllem 18174 yonedalem3b 18232 |
Copyright terms: Public domain | W3C validator |