MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptcl Structured version   Visualization version   GIF version

Theorem gsummptcl 19926
Description: Closure of a finite group sum over a finite set as map. (Contributed by AV, 29-Dec-2018.)
Hypotheses
Ref Expression
gsummptcl.b 𝐵 = (Base‘𝐺)
gsummptcl.g (𝜑𝐺 ∈ CMnd)
gsummptcl.n (𝜑𝑁 ∈ Fin)
gsummptcl.e (𝜑 → ∀𝑖𝑁 𝑋𝐵)
Assertion
Ref Expression
gsummptcl (𝜑 → (𝐺 Σg (𝑖𝑁𝑋)) ∈ 𝐵)
Distinct variable groups:   𝐵,𝑖   𝑖,𝑁
Allowed substitution hints:   𝜑(𝑖)   𝐺(𝑖)   𝑋(𝑖)

Proof of Theorem gsummptcl
StepHypRef Expression
1 gsummptcl.b . 2 𝐵 = (Base‘𝐺)
2 eqid 2725 . 2 (0g𝐺) = (0g𝐺)
3 gsummptcl.g . 2 (𝜑𝐺 ∈ CMnd)
4 gsummptcl.n . 2 (𝜑𝑁 ∈ Fin)
5 gsummptcl.e . . 3 (𝜑 → ∀𝑖𝑁 𝑋𝐵)
6 eqid 2725 . . . 4 (𝑖𝑁𝑋) = (𝑖𝑁𝑋)
76fmpt 7115 . . 3 (∀𝑖𝑁 𝑋𝐵 ↔ (𝑖𝑁𝑋):𝑁𝐵)
85, 7sylib 217 . 2 (𝜑 → (𝑖𝑁𝑋):𝑁𝐵)
96fnmpt 6690 . . . 4 (∀𝑖𝑁 𝑋𝐵 → (𝑖𝑁𝑋) Fn 𝑁)
105, 9syl 17 . . 3 (𝜑 → (𝑖𝑁𝑋) Fn 𝑁)
11 fvexd 6907 . . 3 (𝜑 → (0g𝐺) ∈ V)
1210, 4, 11fndmfifsupp 9401 . 2 (𝜑 → (𝑖𝑁𝑋) finSupp (0g𝐺))
131, 2, 3, 4, 8, 12gsumcl 19874 1 (𝜑 → (𝐺 Σg (𝑖𝑁𝑋)) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wral 3051  Vcvv 3463  cmpt 5226   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7416  Fincfn 8962  Basecbs 17179  0gc0g 17420   Σg cgsu 17421  CMndccmn 19739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7991  df-2nd 7992  df-supp 8164  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fsupp 9386  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517  df-fzo 13660  df-seq 13999  df-hash 14322  df-0g 17422  df-gsum 17423  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-cntz 19272  df-cmn 19741
This theorem is referenced by:  srgbinomlem3  20172  srgbinomlem4  20173  gsummgp0  20258  coe1fzgsumdlem  22231  evl1gsumdlem  22284  mamucl  22319  matgsumcl  22380  madetsmelbas  22384  madetsmelbas2  22385  mat1dimmul  22396  mavmulcl  22467  mdetleib2  22508  mdetf  22515  mdetdiaglem  22518  mdetdiag  22519  mdetrlin  22522  mdetrsca  22523  mdetralt  22528  gsummatr01  22579  smadiadet  22590  m2pmfzgsumcl  22668  decpmatmul  22692  pmatcollpw3fi1lem1  22706  pm2mpmhmlem2  22739  chfacfscmulgsum  22780  chfacfpmmulgsum  22784  cpmadugsumlemF  22796  cpmadugsumfi  22797  gsummptres  32811  gsummptres2  32812  mdetpmtr1  33481  gsumesum  33735  esumlub  33736  esum2d  33769  evl1gprodd  41644  idomnnzgmulnz  41660  aks6d1c5lem0  41662  aks6d1c5lem3  41664  aks6d1c5lem2  41665  aks6d1c5  41666  deg1gprod  41668  mgpsumz  47538  mgpsumn  47539  ply1mulgsum  47570
  Copyright terms: Public domain W3C validator