MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptcl Structured version   Visualization version   GIF version

Theorem gsummptcl 19874
Description: Closure of a finite group sum over a finite set as map. (Contributed by AV, 29-Dec-2018.)
Hypotheses
Ref Expression
gsummptcl.b 𝐵 = (Base‘𝐺)
gsummptcl.g (𝜑𝐺 ∈ CMnd)
gsummptcl.n (𝜑𝑁 ∈ Fin)
gsummptcl.e (𝜑 → ∀𝑖𝑁 𝑋𝐵)
Assertion
Ref Expression
gsummptcl (𝜑 → (𝐺 Σg (𝑖𝑁𝑋)) ∈ 𝐵)
Distinct variable groups:   𝐵,𝑖   𝑖,𝑁
Allowed substitution hints:   𝜑(𝑖)   𝐺(𝑖)   𝑋(𝑖)

Proof of Theorem gsummptcl
StepHypRef Expression
1 gsummptcl.b . 2 𝐵 = (Base‘𝐺)
2 eqid 2731 . 2 (0g𝐺) = (0g𝐺)
3 gsummptcl.g . 2 (𝜑𝐺 ∈ CMnd)
4 gsummptcl.n . 2 (𝜑𝑁 ∈ Fin)
5 gsummptcl.e . . 3 (𝜑 → ∀𝑖𝑁 𝑋𝐵)
6 eqid 2731 . . . 4 (𝑖𝑁𝑋) = (𝑖𝑁𝑋)
76fmpt 7038 . . 3 (∀𝑖𝑁 𝑋𝐵 ↔ (𝑖𝑁𝑋):𝑁𝐵)
85, 7sylib 218 . 2 (𝜑 → (𝑖𝑁𝑋):𝑁𝐵)
96fnmpt 6616 . . . 4 (∀𝑖𝑁 𝑋𝐵 → (𝑖𝑁𝑋) Fn 𝑁)
105, 9syl 17 . . 3 (𝜑 → (𝑖𝑁𝑋) Fn 𝑁)
11 fvexd 6832 . . 3 (𝜑 → (0g𝐺) ∈ V)
1210, 4, 11fndmfifsupp 9257 . 2 (𝜑 → (𝑖𝑁𝑋) finSupp (0g𝐺))
131, 2, 3, 4, 8, 12gsumcl 19822 1 (𝜑 → (𝐺 Σg (𝑖𝑁𝑋)) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cmpt 5167   Fn wfn 6471  wf 6472  cfv 6476  (class class class)co 7341  Fincfn 8864  Basecbs 17115  0gc0g 17338   Σg cgsu 17339  CMndccmn 19687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-fzo 13550  df-seq 13904  df-hash 14233  df-0g 17340  df-gsum 17341  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-cntz 19224  df-cmn 19689
This theorem is referenced by:  srgbinomlem3  20141  srgbinomlem4  20142  gsummgp0  20231  coe1fzgsumdlem  22213  evl1gsumdlem  22266  mamucl  22311  matgsumcl  22370  madetsmelbas  22374  madetsmelbas2  22375  mat1dimmul  22386  mavmulcl  22457  mdetleib2  22498  mdetf  22505  mdetdiaglem  22508  mdetdiag  22509  mdetrlin  22512  mdetrsca  22513  mdetralt  22518  gsummatr01  22569  smadiadet  22580  m2pmfzgsumcl  22658  decpmatmul  22682  pmatcollpw3fi1lem1  22696  pm2mpmhmlem2  22729  chfacfscmulgsum  22770  chfacfpmmulgsum  22774  cpmadugsumlemF  22786  cpmadugsumfi  22787  gsummptres  33024  gsummptres2  33025  mdetpmtr1  33828  gsumesum  34064  esumlub  34065  esum2d  34098  evl1gprodd  42150  idomnnzgmulnz  42166  aks6d1c5lem0  42168  aks6d1c5lem3  42170  aks6d1c5lem2  42171  aks6d1c5  42172  deg1gprod  42173  mgpsumz  48393  mgpsumn  48394  ply1mulgsum  48422
  Copyright terms: Public domain W3C validator