![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsummptcl | Structured version Visualization version GIF version |
Description: Closure of a finite group sum over a finite set as map. (Contributed by AV, 29-Dec-2018.) |
Ref | Expression |
---|---|
gsummptcl.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummptcl.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsummptcl.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
gsummptcl.e | ⊢ (𝜑 → ∀𝑖 ∈ 𝑁 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
gsummptcl | ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ 𝑁 ↦ 𝑋)) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptcl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2725 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | gsummptcl.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsummptcl.n | . 2 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
5 | gsummptcl.e | . . 3 ⊢ (𝜑 → ∀𝑖 ∈ 𝑁 𝑋 ∈ 𝐵) | |
6 | eqid 2725 | . . . 4 ⊢ (𝑖 ∈ 𝑁 ↦ 𝑋) = (𝑖 ∈ 𝑁 ↦ 𝑋) | |
7 | 6 | fmpt 7115 | . . 3 ⊢ (∀𝑖 ∈ 𝑁 𝑋 ∈ 𝐵 ↔ (𝑖 ∈ 𝑁 ↦ 𝑋):𝑁⟶𝐵) |
8 | 5, 7 | sylib 217 | . 2 ⊢ (𝜑 → (𝑖 ∈ 𝑁 ↦ 𝑋):𝑁⟶𝐵) |
9 | 6 | fnmpt 6690 | . . . 4 ⊢ (∀𝑖 ∈ 𝑁 𝑋 ∈ 𝐵 → (𝑖 ∈ 𝑁 ↦ 𝑋) Fn 𝑁) |
10 | 5, 9 | syl 17 | . . 3 ⊢ (𝜑 → (𝑖 ∈ 𝑁 ↦ 𝑋) Fn 𝑁) |
11 | fvexd 6907 | . . 3 ⊢ (𝜑 → (0g‘𝐺) ∈ V) | |
12 | 10, 4, 11 | fndmfifsupp 9401 | . 2 ⊢ (𝜑 → (𝑖 ∈ 𝑁 ↦ 𝑋) finSupp (0g‘𝐺)) |
13 | 1, 2, 3, 4, 8, 12 | gsumcl 19874 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ 𝑁 ↦ 𝑋)) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∀wral 3051 Vcvv 3463 ↦ cmpt 5226 Fn wfn 6538 ⟶wf 6539 ‘cfv 6543 (class class class)co 7416 Fincfn 8962 Basecbs 17179 0gc0g 17420 Σg cgsu 17421 CMndccmn 19739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-supp 8164 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-fsupp 9386 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-fzo 13660 df-seq 13999 df-hash 14322 df-0g 17422 df-gsum 17423 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-cntz 19272 df-cmn 19741 |
This theorem is referenced by: srgbinomlem3 20172 srgbinomlem4 20173 gsummgp0 20258 coe1fzgsumdlem 22231 evl1gsumdlem 22284 mamucl 22319 matgsumcl 22380 madetsmelbas 22384 madetsmelbas2 22385 mat1dimmul 22396 mavmulcl 22467 mdetleib2 22508 mdetf 22515 mdetdiaglem 22518 mdetdiag 22519 mdetrlin 22522 mdetrsca 22523 mdetralt 22528 gsummatr01 22579 smadiadet 22590 m2pmfzgsumcl 22668 decpmatmul 22692 pmatcollpw3fi1lem1 22706 pm2mpmhmlem2 22739 chfacfscmulgsum 22780 chfacfpmmulgsum 22784 cpmadugsumlemF 22796 cpmadugsumfi 22797 gsummptres 32811 gsummptres2 32812 mdetpmtr1 33481 gsumesum 33735 esumlub 33736 esum2d 33769 evl1gprodd 41644 idomnnzgmulnz 41660 aks6d1c5lem0 41662 aks6d1c5lem3 41664 aks6d1c5lem2 41665 aks6d1c5 41666 deg1gprod 41668 mgpsumz 47538 mgpsumn 47539 ply1mulgsum 47570 |
Copyright terms: Public domain | W3C validator |