MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptcl Structured version   Visualization version   GIF version

Theorem gsummptcl 19829
Description: Closure of a finite group sum over a finite set as map. (Contributed by AV, 29-Dec-2018.)
Hypotheses
Ref Expression
gsummptcl.b 𝐵 = (Base‘𝐺)
gsummptcl.g (𝜑𝐺 ∈ CMnd)
gsummptcl.n (𝜑𝑁 ∈ Fin)
gsummptcl.e (𝜑 → ∀𝑖𝑁 𝑋𝐵)
Assertion
Ref Expression
gsummptcl (𝜑 → (𝐺 Σg (𝑖𝑁𝑋)) ∈ 𝐵)
Distinct variable groups:   𝐵,𝑖   𝑖,𝑁
Allowed substitution hints:   𝜑(𝑖)   𝐺(𝑖)   𝑋(𝑖)

Proof of Theorem gsummptcl
StepHypRef Expression
1 gsummptcl.b . 2 𝐵 = (Base‘𝐺)
2 eqid 2732 . 2 (0g𝐺) = (0g𝐺)
3 gsummptcl.g . 2 (𝜑𝐺 ∈ CMnd)
4 gsummptcl.n . 2 (𝜑𝑁 ∈ Fin)
5 gsummptcl.e . . 3 (𝜑 → ∀𝑖𝑁 𝑋𝐵)
6 eqid 2732 . . . 4 (𝑖𝑁𝑋) = (𝑖𝑁𝑋)
76fmpt 7106 . . 3 (∀𝑖𝑁 𝑋𝐵 ↔ (𝑖𝑁𝑋):𝑁𝐵)
85, 7sylib 217 . 2 (𝜑 → (𝑖𝑁𝑋):𝑁𝐵)
96fnmpt 6687 . . . 4 (∀𝑖𝑁 𝑋𝐵 → (𝑖𝑁𝑋) Fn 𝑁)
105, 9syl 17 . . 3 (𝜑 → (𝑖𝑁𝑋) Fn 𝑁)
11 fvexd 6903 . . 3 (𝜑 → (0g𝐺) ∈ V)
1210, 4, 11fndmfifsupp 9372 . 2 (𝜑 → (𝑖𝑁𝑋) finSupp (0g𝐺))
131, 2, 3, 4, 8, 12gsumcl 19777 1 (𝜑 → (𝐺 Σg (𝑖𝑁𝑋)) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wral 3061  Vcvv 3474  cmpt 5230   Fn wfn 6535  wf 6536  cfv 6540  (class class class)co 7405  Fincfn 8935  Basecbs 17140  0gc0g 17381   Σg cgsu 17382  CMndccmn 19642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-0g 17383  df-gsum 17384  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-cntz 19175  df-cmn 19644
This theorem is referenced by:  srgbinomlem3  20044  srgbinomlem4  20045  gsummgp0  20123  coe1fzgsumdlem  21816  evl1gsumdlem  21866  mamucl  21892  matgsumcl  21953  madetsmelbas  21957  madetsmelbas2  21958  mat1dimmul  21969  mavmulcl  22040  mdetleib2  22081  mdetf  22088  mdetdiaglem  22091  mdetdiag  22092  mdetrlin  22095  mdetrsca  22096  mdetralt  22101  gsummatr01  22152  smadiadet  22163  m2pmfzgsumcl  22241  decpmatmul  22265  pmatcollpw3fi1lem1  22279  pm2mpmhmlem2  22312  chfacfscmulgsum  22353  chfacfpmmulgsum  22357  cpmadugsumlemF  22369  cpmadugsumfi  22370  gsummptres  32191  gsummptres2  32192  mdetpmtr1  32791  gsumesum  33045  esumlub  33046  esum2d  33079  mgpsumz  46991  mgpsumn  46992  ply1mulgsum  47024
  Copyright terms: Public domain W3C validator