Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh8a | Structured version Visualization version GIF version |
Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 5-May-2015.) |
Ref | Expression |
---|---|
mapdh8a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdh8a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdh8a.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdh8a.s | ⊢ − = (-g‘𝑈) |
mapdh8a.o | ⊢ 0 = (0g‘𝑈) |
mapdh8a.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdh8a.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdh8a.d | ⊢ 𝐷 = (Base‘𝐶) |
mapdh8a.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdh8a.q | ⊢ 𝑄 = (0g‘𝐶) |
mapdh8a.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdh8a.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdh8a.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
mapdh8a.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdh8a.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
mapdh8a.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
mapdh8a.a | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) |
mapdh8a.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdh8a.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
mapdh8a.yz | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) |
mapdh8a.xt | ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) |
mapdh8a.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) |
Ref | Expression |
---|---|
mapdh8a | ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh8a.q | . 2 ⊢ 𝑄 = (0g‘𝐶) | |
2 | mapdh8a.i | . 2 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
3 | mapdh8a.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | mapdh8a.m | . 2 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
5 | mapdh8a.u | . 2 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | mapdh8a.v | . 2 ⊢ 𝑉 = (Base‘𝑈) | |
7 | mapdh8a.s | . 2 ⊢ − = (-g‘𝑈) | |
8 | mapdh8a.o | . 2 ⊢ 0 = (0g‘𝑈) | |
9 | mapdh8a.n | . 2 ⊢ 𝑁 = (LSpan‘𝑈) | |
10 | mapdh8a.c | . 2 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
11 | mapdh8a.d | . 2 ⊢ 𝐷 = (Base‘𝐶) | |
12 | mapdh8a.r | . 2 ⊢ 𝑅 = (-g‘𝐶) | |
13 | mapdh8a.j | . 2 ⊢ 𝐽 = (LSpan‘𝐶) | |
14 | mapdh8a.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | mapdh8a.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
16 | mapdh8a.mn | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
17 | mapdh8a.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
18 | mapdh8a.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
19 | mapdh8a.xt | . 2 ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) | |
20 | mapdh8a.xn | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) | |
21 | mapdh8a.yz | . 2 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) | |
22 | mapdh8a.a | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) | |
23 | eqidd 2737 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) | |
24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 | mapdheq4 39972 | 1 ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 Vcvv 3440 ∖ cdif 3893 ifcif 4470 {csn 4570 {cpr 4572 〈cotp 4578 ↦ cmpt 5169 ‘cfv 6465 ℩crio 7272 (class class class)co 7316 1st c1st 7875 2nd c2nd 7876 Basecbs 16986 0gc0g 17224 -gcsg 18652 LSpanclspn 20313 HLchlt 37589 LHypclh 38224 DVecHcdvh 39318 LCDualclcd 39826 mapdcmpd 39864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 ax-riotaBAD 37192 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-tp 4575 df-op 4577 df-ot 4579 df-uni 4850 df-int 4892 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-of 7574 df-om 7759 df-1st 7877 df-2nd 7878 df-tpos 8090 df-undef 8137 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-map 8666 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-3 12116 df-4 12117 df-5 12118 df-6 12119 df-n0 12313 df-z 12399 df-uz 12662 df-fz 13319 df-struct 16922 df-sets 16939 df-slot 16957 df-ndx 16969 df-base 16987 df-ress 17016 df-plusg 17049 df-mulr 17050 df-sca 17052 df-vsca 17053 df-0g 17226 df-mre 17369 df-mrc 17370 df-acs 17372 df-proset 18087 df-poset 18105 df-plt 18122 df-lub 18138 df-glb 18139 df-join 18140 df-meet 18141 df-p0 18217 df-p1 18218 df-lat 18224 df-clat 18291 df-mgm 18400 df-sgrp 18449 df-mnd 18460 df-submnd 18505 df-grp 18653 df-minusg 18654 df-sbg 18655 df-subg 18825 df-cntz 18996 df-oppg 19023 df-lsm 19314 df-cmn 19460 df-abl 19461 df-mgp 19793 df-ur 19810 df-ring 19857 df-oppr 19934 df-dvdsr 19955 df-unit 19956 df-invr 19986 df-dvr 19997 df-drng 20069 df-lmod 20205 df-lss 20274 df-lsp 20314 df-lvec 20445 df-lsatoms 37215 df-lshyp 37216 df-lcv 37258 df-lfl 37297 df-lkr 37325 df-ldual 37363 df-oposet 37415 df-ol 37417 df-oml 37418 df-covers 37505 df-ats 37506 df-atl 37537 df-cvlat 37561 df-hlat 37590 df-llines 37738 df-lplanes 37739 df-lvols 37740 df-lines 37741 df-psubsp 37743 df-pmap 37744 df-padd 38036 df-lhyp 38228 df-laut 38229 df-ldil 38344 df-ltrn 38345 df-trl 38399 df-tgrp 38983 df-tendo 38995 df-edring 38997 df-dveca 39243 df-disoa 39269 df-dvech 39319 df-dib 39379 df-dic 39413 df-dih 39469 df-doch 39588 df-djh 39635 df-lcdual 39827 df-mapd 39865 |
This theorem is referenced by: mapdh8aa 40016 mapdh8b 40020 mapdh8d0N 40022 mapdh8d 40023 mapdh8g 40025 |
Copyright terms: Public domain | W3C validator |