Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhilsmul2 Structured version   Visualization version   GIF version

Theorem hlhilsmul2 42063
Description: Scalar multiplication for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
Hypotheses
Ref Expression
hlhilsbase.h 𝐻 = (LHyp‘𝐾)
hlhilsbase.l 𝐿 = ((DVecH‘𝐾)‘𝑊)
hlhilsbase.s 𝑆 = (Scalar‘𝐿)
hlhilsbase.u 𝑈 = ((HLHil‘𝐾)‘𝑊)
hlhilsbase.r 𝑅 = (Scalar‘𝑈)
hlhilsbase.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hlhilsmul2.m · = (.r𝑆)
Assertion
Ref Expression
hlhilsmul2 (𝜑· = (.r𝑅))

Proof of Theorem hlhilsmul2
StepHypRef Expression
1 hlhilsmul2.m . . 3 · = (.r𝑆)
2 hlhilsbase.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 hlhilsbase.h . . . . . 6 𝐻 = (LHyp‘𝐾)
4 eqid 2733 . . . . . 6 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
5 hlhilsbase.l . . . . . 6 𝐿 = ((DVecH‘𝐾)‘𝑊)
6 hlhilsbase.s . . . . . 6 𝑆 = (Scalar‘𝐿)
73, 4, 5, 6dvhsca 41201 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑆 = ((EDRing‘𝐾)‘𝑊))
82, 7syl 17 . . . 4 (𝜑𝑆 = ((EDRing‘𝐾)‘𝑊))
98fveq2d 6832 . . 3 (𝜑 → (.r𝑆) = (.r‘((EDRing‘𝐾)‘𝑊)))
101, 9eqtrid 2780 . 2 (𝜑· = (.r‘((EDRing‘𝐾)‘𝑊)))
11 hlhilsbase.u . . 3 𝑈 = ((HLHil‘𝐾)‘𝑊)
12 hlhilsbase.r . . 3 𝑅 = (Scalar‘𝑈)
13 eqid 2733 . . 3 (.r‘((EDRing‘𝐾)‘𝑊)) = (.r‘((EDRing‘𝐾)‘𝑊))
143, 4, 11, 12, 2, 13hlhilsmul 42060 . 2 (𝜑 → (.r‘((EDRing‘𝐾)‘𝑊)) = (.r𝑅))
1510, 14eqtrd 2768 1 (𝜑· = (.r𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cfv 6486  .rcmulr 17164  Scalarcsca 17166  HLchlt 39469  LHypclh 40103  EDRingcedring 40872  DVecHcdvh 41197  HLHilchlh 42051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-dvech 41198  df-hlhil 42052
This theorem is referenced by:  hlhils1N  42065  hlhillvec  42070  hlhilsrnglem  42072  hlhilphllem  42078
  Copyright terms: Public domain W3C validator