Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhilsmul2 Structured version   Visualization version   GIF version

Theorem hlhilsmul2 39140
Description: Scalar multiplication for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
Hypotheses
Ref Expression
hlhilsbase.h 𝐻 = (LHyp‘𝐾)
hlhilsbase.l 𝐿 = ((DVecH‘𝐾)‘𝑊)
hlhilsbase.s 𝑆 = (Scalar‘𝐿)
hlhilsbase.u 𝑈 = ((HLHil‘𝐾)‘𝑊)
hlhilsbase.r 𝑅 = (Scalar‘𝑈)
hlhilsbase.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hlhilsmul2.m · = (.r𝑆)
Assertion
Ref Expression
hlhilsmul2 (𝜑· = (.r𝑅))

Proof of Theorem hlhilsmul2
StepHypRef Expression
1 hlhilsmul2.m . . 3 · = (.r𝑆)
2 hlhilsbase.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 hlhilsbase.h . . . . . 6 𝐻 = (LHyp‘𝐾)
4 eqid 2824 . . . . . 6 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
5 hlhilsbase.l . . . . . 6 𝐿 = ((DVecH‘𝐾)‘𝑊)
6 hlhilsbase.s . . . . . 6 𝑆 = (Scalar‘𝐿)
73, 4, 5, 6dvhsca 38278 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑆 = ((EDRing‘𝐾)‘𝑊))
82, 7syl 17 . . . 4 (𝜑𝑆 = ((EDRing‘𝐾)‘𝑊))
98fveq2d 6655 . . 3 (𝜑 → (.r𝑆) = (.r‘((EDRing‘𝐾)‘𝑊)))
101, 9syl5eq 2871 . 2 (𝜑· = (.r‘((EDRing‘𝐾)‘𝑊)))
11 hlhilsbase.u . . 3 𝑈 = ((HLHil‘𝐾)‘𝑊)
12 hlhilsbase.r . . 3 𝑅 = (Scalar‘𝑈)
13 eqid 2824 . . 3 (.r‘((EDRing‘𝐾)‘𝑊)) = (.r‘((EDRing‘𝐾)‘𝑊))
143, 4, 11, 12, 2, 13hlhilsmul 39137 . 2 (𝜑 → (.r‘((EDRing‘𝐾)‘𝑊)) = (.r𝑅))
1510, 14eqtrd 2859 1 (𝜑· = (.r𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  cfv 6336  .rcmulr 16555  Scalarcsca 16557  HLchlt 36546  LHypclh 37180  EDRingcedring 37949  DVecHcdvh 38274  HLHilchlh 39128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-nn 11624  df-2 11686  df-3 11687  df-4 11688  df-5 11689  df-6 11690  df-7 11691  df-8 11692  df-n0 11884  df-z 11968  df-uz 12230  df-fz 12884  df-struct 16474  df-ndx 16475  df-slot 16476  df-base 16478  df-sets 16479  df-plusg 16567  df-mulr 16568  df-starv 16569  df-sca 16570  df-vsca 16571  df-ip 16572  df-dvech 38275  df-hlhil 39129
This theorem is referenced by:  hlhils1N  39142  hlhillvec  39147  hlhilsrnglem  39149  hlhilphllem  39155
  Copyright terms: Public domain W3C validator