| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for knoppndv 36510. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| Ref | Expression |
|---|---|
| knoppndvlem1.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| knoppndvlem1.j | ⊢ (𝜑 → 𝐽 ∈ ℤ) |
| knoppndvlem1.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| Ref | Expression |
|---|---|
| knoppndvlem1 | ⊢ (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12322 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℝ) |
| 3 | knoppndvlem1.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 4 | nnz 12617 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 6 | 5 | zred 12705 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 7 | 2, 6 | remulcld 11273 | . . . 4 ⊢ (𝜑 → (2 · 𝑁) ∈ ℝ) |
| 8 | 2 | recnd 11271 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℂ) |
| 9 | 6 | recnd 11271 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 10 | 2ne0 12352 | . . . . . 6 ⊢ 2 ≠ 0 | |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ≠ 0) |
| 12 | 0red 11246 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 13 | 1red 11244 | . . . . . . . 8 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 14 | 0lt1 11767 | . . . . . . . . 9 ⊢ 0 < 1 | |
| 15 | 14 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 0 < 1) |
| 16 | nnge1 12276 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 1 ≤ 𝑁) | |
| 17 | 3, 16 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 1 ≤ 𝑁) |
| 18 | 12, 13, 6, 15, 17 | ltletrd 11403 | . . . . . . 7 ⊢ (𝜑 → 0 < 𝑁) |
| 19 | 12, 18 | ltned 11379 | . . . . . 6 ⊢ (𝜑 → 0 ≠ 𝑁) |
| 20 | 19 | necomd 2986 | . . . . 5 ⊢ (𝜑 → 𝑁 ≠ 0) |
| 21 | 8, 9, 11, 20 | mulne0d 11897 | . . . 4 ⊢ (𝜑 → (2 · 𝑁) ≠ 0) |
| 22 | knoppndvlem1.j | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ ℤ) | |
| 23 | 22 | znegcld 12707 | . . . 4 ⊢ (𝜑 → -𝐽 ∈ ℤ) |
| 24 | 7, 21, 23 | reexpclzd 14271 | . . 3 ⊢ (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℝ) |
| 25 | 24, 2, 11 | redivcld 12077 | . 2 ⊢ (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ) |
| 26 | knoppndvlem1.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 27 | 26 | zred 12705 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 28 | 25, 27 | remulcld 11273 | 1 ⊢ (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ≠ wne 2931 class class class wbr 5123 (class class class)co 7413 ℝcr 11136 0cc0 11137 1c1 11138 · cmul 11142 < clt 11277 ≤ cle 11278 -cneg 11475 / cdiv 11902 ℕcn 12248 2c2 12303 ℤcz 12596 ↑cexp 14084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-n0 12510 df-z 12597 df-uz 12861 df-seq 14025 df-exp 14085 |
| This theorem is referenced by: knoppndvlem6 36493 knoppndvlem7 36494 knoppndvlem10 36497 knoppndvlem14 36501 knoppndvlem15 36502 knoppndvlem17 36504 |
| Copyright terms: Public domain | W3C validator |