| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for knoppndv 36527. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| Ref | Expression |
|---|---|
| knoppndvlem1.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| knoppndvlem1.j | ⊢ (𝜑 → 𝐽 ∈ ℤ) |
| knoppndvlem1.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| Ref | Expression |
|---|---|
| knoppndvlem1 | ⊢ (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12221 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℝ) |
| 3 | knoppndvlem1.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 4 | nnz 12511 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 6 | 5 | zred 12599 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 7 | 2, 6 | remulcld 11164 | . . . 4 ⊢ (𝜑 → (2 · 𝑁) ∈ ℝ) |
| 8 | 2 | recnd 11162 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℂ) |
| 9 | 6 | recnd 11162 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 10 | 2ne0 12251 | . . . . . 6 ⊢ 2 ≠ 0 | |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ≠ 0) |
| 12 | 0red 11137 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 13 | 1red 11135 | . . . . . . . 8 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 14 | 0lt1 11661 | . . . . . . . . 9 ⊢ 0 < 1 | |
| 15 | 14 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 0 < 1) |
| 16 | nnge1 12175 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 1 ≤ 𝑁) | |
| 17 | 3, 16 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 1 ≤ 𝑁) |
| 18 | 12, 13, 6, 15, 17 | ltletrd 11295 | . . . . . . 7 ⊢ (𝜑 → 0 < 𝑁) |
| 19 | 12, 18 | ltned 11271 | . . . . . 6 ⊢ (𝜑 → 0 ≠ 𝑁) |
| 20 | 19 | necomd 2980 | . . . . 5 ⊢ (𝜑 → 𝑁 ≠ 0) |
| 21 | 8, 9, 11, 20 | mulne0d 11791 | . . . 4 ⊢ (𝜑 → (2 · 𝑁) ≠ 0) |
| 22 | knoppndvlem1.j | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ ℤ) | |
| 23 | 22 | znegcld 12601 | . . . 4 ⊢ (𝜑 → -𝐽 ∈ ℤ) |
| 24 | 7, 21, 23 | reexpclzd 14175 | . . 3 ⊢ (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℝ) |
| 25 | 24, 2, 11 | redivcld 11971 | . 2 ⊢ (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ) |
| 26 | knoppndvlem1.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 27 | 26 | zred 12599 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 28 | 25, 27 | remulcld 11164 | 1 ⊢ (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5095 (class class class)co 7353 ℝcr 11027 0cc0 11028 1c1 11029 · cmul 11033 < clt 11168 ≤ cle 11169 -cneg 11367 / cdiv 11796 ℕcn 12147 2c2 12202 ℤcz 12490 ↑cexp 13987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-n0 12404 df-z 12491 df-uz 12755 df-seq 13928 df-exp 13988 |
| This theorem is referenced by: knoppndvlem6 36510 knoppndvlem7 36511 knoppndvlem10 36514 knoppndvlem14 36518 knoppndvlem15 36519 knoppndvlem17 36521 |
| Copyright terms: Public domain | W3C validator |