Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem1 Structured version   Visualization version   GIF version

Theorem knoppndvlem1 36530
Description: Lemma for knoppndv 36552. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem1.n (𝜑𝑁 ∈ ℕ)
knoppndvlem1.j (𝜑𝐽 ∈ ℤ)
knoppndvlem1.m (𝜑𝑀 ∈ ℤ)
Assertion
Ref Expression
knoppndvlem1 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)

Proof of Theorem knoppndvlem1
StepHypRef Expression
1 2re 12314 . . . . . 6 2 ∈ ℝ
21a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ)
3 knoppndvlem1.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
4 nnz 12609 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
53, 4syl 17 . . . . . 6 (𝜑𝑁 ∈ ℤ)
65zred 12697 . . . . 5 (𝜑𝑁 ∈ ℝ)
72, 6remulcld 11265 . . . 4 (𝜑 → (2 · 𝑁) ∈ ℝ)
82recnd 11263 . . . . 5 (𝜑 → 2 ∈ ℂ)
96recnd 11263 . . . . 5 (𝜑𝑁 ∈ ℂ)
10 2ne0 12344 . . . . . 6 2 ≠ 0
1110a1i 11 . . . . 5 (𝜑 → 2 ≠ 0)
12 0red 11238 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
13 1red 11236 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
14 0lt1 11759 . . . . . . . . 9 0 < 1
1514a1i 11 . . . . . . . 8 (𝜑 → 0 < 1)
16 nnge1 12268 . . . . . . . . 9 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
173, 16syl 17 . . . . . . . 8 (𝜑 → 1 ≤ 𝑁)
1812, 13, 6, 15, 17ltletrd 11395 . . . . . . 7 (𝜑 → 0 < 𝑁)
1912, 18ltned 11371 . . . . . 6 (𝜑 → 0 ≠ 𝑁)
2019necomd 2987 . . . . 5 (𝜑𝑁 ≠ 0)
218, 9, 11, 20mulne0d 11889 . . . 4 (𝜑 → (2 · 𝑁) ≠ 0)
22 knoppndvlem1.j . . . . 5 (𝜑𝐽 ∈ ℤ)
2322znegcld 12699 . . . 4 (𝜑 → -𝐽 ∈ ℤ)
247, 21, 23reexpclzd 14267 . . 3 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℝ)
2524, 2, 11redivcld 12069 . 2 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ)
26 knoppndvlem1.m . . 3 (𝜑𝑀 ∈ ℤ)
2726zred 12697 . 2 (𝜑𝑀 ∈ ℝ)
2825, 27remulcld 11265 1 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wne 2932   class class class wbr 5119  (class class class)co 7405  cr 11128  0cc0 11129  1c1 11130   · cmul 11134   < clt 11269  cle 11270  -cneg 11467   / cdiv 11894  cn 12240  2c2 12295  cz 12588  cexp 14079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-seq 14020  df-exp 14080
This theorem is referenced by:  knoppndvlem6  36535  knoppndvlem7  36536  knoppndvlem10  36539  knoppndvlem14  36543  knoppndvlem15  36544  knoppndvlem17  36546
  Copyright terms: Public domain W3C validator