| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for knoppndv 36529. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| Ref | Expression |
|---|---|
| knoppndvlem1.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| knoppndvlem1.j | ⊢ (𝜑 → 𝐽 ∈ ℤ) |
| knoppndvlem1.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| Ref | Expression |
|---|---|
| knoppndvlem1 | ⊢ (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12267 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℝ) |
| 3 | knoppndvlem1.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 4 | nnz 12557 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 6 | 5 | zred 12645 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 7 | 2, 6 | remulcld 11211 | . . . 4 ⊢ (𝜑 → (2 · 𝑁) ∈ ℝ) |
| 8 | 2 | recnd 11209 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℂ) |
| 9 | 6 | recnd 11209 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 10 | 2ne0 12297 | . . . . . 6 ⊢ 2 ≠ 0 | |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ≠ 0) |
| 12 | 0red 11184 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 13 | 1red 11182 | . . . . . . . 8 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 14 | 0lt1 11707 | . . . . . . . . 9 ⊢ 0 < 1 | |
| 15 | 14 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 0 < 1) |
| 16 | nnge1 12221 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 1 ≤ 𝑁) | |
| 17 | 3, 16 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 1 ≤ 𝑁) |
| 18 | 12, 13, 6, 15, 17 | ltletrd 11341 | . . . . . . 7 ⊢ (𝜑 → 0 < 𝑁) |
| 19 | 12, 18 | ltned 11317 | . . . . . 6 ⊢ (𝜑 → 0 ≠ 𝑁) |
| 20 | 19 | necomd 2981 | . . . . 5 ⊢ (𝜑 → 𝑁 ≠ 0) |
| 21 | 8, 9, 11, 20 | mulne0d 11837 | . . . 4 ⊢ (𝜑 → (2 · 𝑁) ≠ 0) |
| 22 | knoppndvlem1.j | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ ℤ) | |
| 23 | 22 | znegcld 12647 | . . . 4 ⊢ (𝜑 → -𝐽 ∈ ℤ) |
| 24 | 7, 21, 23 | reexpclzd 14221 | . . 3 ⊢ (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℝ) |
| 25 | 24, 2, 11 | redivcld 12017 | . 2 ⊢ (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ) |
| 26 | knoppndvlem1.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 27 | 26 | zred 12645 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 28 | 25, 27 | remulcld 11211 | 1 ⊢ (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 · cmul 11080 < clt 11215 ≤ cle 11216 -cneg 11413 / cdiv 11842 ℕcn 12193 2c2 12248 ℤcz 12536 ↑cexp 14033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-seq 13974 df-exp 14034 |
| This theorem is referenced by: knoppndvlem6 36512 knoppndvlem7 36513 knoppndvlem10 36516 knoppndvlem14 36520 knoppndvlem15 36521 knoppndvlem17 36523 |
| Copyright terms: Public domain | W3C validator |