![]() |
Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem1 | Structured version Visualization version GIF version |
Description: Lemma for knoppndv 33052. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
Ref | Expression |
---|---|
knoppndvlem1.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
knoppndvlem1.j | ⊢ (𝜑 → 𝐽 ∈ ℤ) |
knoppndvlem1.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
Ref | Expression |
---|---|
knoppndvlem1 | ⊢ (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 11432 | . . . . . 6 ⊢ 2 ∈ ℝ | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℝ) |
3 | knoppndvlem1.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
4 | nnz 11734 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
6 | 5 | zred 11817 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
7 | 2, 6 | remulcld 10394 | . . . 4 ⊢ (𝜑 → (2 · 𝑁) ∈ ℝ) |
8 | 2 | recnd 10392 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℂ) |
9 | 6 | recnd 10392 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
10 | 2ne0 11469 | . . . . . 6 ⊢ 2 ≠ 0 | |
11 | 10 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ≠ 0) |
12 | 0red 10367 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ ℝ) | |
13 | 1red 10364 | . . . . . . . 8 ⊢ (𝜑 → 1 ∈ ℝ) | |
14 | 0lt1 10881 | . . . . . . . . 9 ⊢ 0 < 1 | |
15 | 14 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 0 < 1) |
16 | nnge1 11387 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 1 ≤ 𝑁) | |
17 | 3, 16 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 1 ≤ 𝑁) |
18 | 12, 13, 6, 15, 17 | ltletrd 10523 | . . . . . . 7 ⊢ (𝜑 → 0 < 𝑁) |
19 | 12, 18 | ltned 10499 | . . . . . 6 ⊢ (𝜑 → 0 ≠ 𝑁) |
20 | 19 | necomd 3054 | . . . . 5 ⊢ (𝜑 → 𝑁 ≠ 0) |
21 | 8, 9, 11, 20 | mulne0d 11011 | . . . 4 ⊢ (𝜑 → (2 · 𝑁) ≠ 0) |
22 | knoppndvlem1.j | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ ℤ) | |
23 | 22 | znegcld 11819 | . . . 4 ⊢ (𝜑 → -𝐽 ∈ ℤ) |
24 | 7, 21, 23 | reexpclzd 13337 | . . 3 ⊢ (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℝ) |
25 | 24, 2, 11 | redivcld 11186 | . 2 ⊢ (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ) |
26 | knoppndvlem1.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
27 | 26 | zred 11817 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
28 | 25, 27 | remulcld 10394 | 1 ⊢ (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2164 ≠ wne 2999 class class class wbr 4875 (class class class)co 6910 ℝcr 10258 0cc0 10259 1c1 10260 · cmul 10264 < clt 10398 ≤ cle 10399 -cneg 10593 / cdiv 11016 ℕcn 11357 2c2 11413 ℤcz 11711 ↑cexp 13161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-n0 11626 df-z 11712 df-uz 11976 df-seq 13103 df-exp 13162 |
This theorem is referenced by: knoppndvlem6 33035 knoppndvlem7 33036 knoppndvlem10 33039 knoppndvlem14 33043 knoppndvlem15 33044 knoppndvlem17 33046 |
Copyright terms: Public domain | W3C validator |