| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for knoppndv 36568. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| Ref | Expression |
|---|---|
| knoppndvlem1.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| knoppndvlem1.j | ⊢ (𝜑 → 𝐽 ∈ ℤ) |
| knoppndvlem1.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| Ref | Expression |
|---|---|
| knoppndvlem1 | ⊢ (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12194 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℝ) |
| 3 | knoppndvlem1.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 4 | nnz 12484 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 6 | 5 | zred 12572 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 7 | 2, 6 | remulcld 11137 | . . . 4 ⊢ (𝜑 → (2 · 𝑁) ∈ ℝ) |
| 8 | 2 | recnd 11135 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℂ) |
| 9 | 6 | recnd 11135 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 10 | 2ne0 12224 | . . . . . 6 ⊢ 2 ≠ 0 | |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ≠ 0) |
| 12 | 0red 11110 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 13 | 1red 11108 | . . . . . . . 8 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 14 | 0lt1 11634 | . . . . . . . . 9 ⊢ 0 < 1 | |
| 15 | 14 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 0 < 1) |
| 16 | nnge1 12148 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 1 ≤ 𝑁) | |
| 17 | 3, 16 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 1 ≤ 𝑁) |
| 18 | 12, 13, 6, 15, 17 | ltletrd 11268 | . . . . . . 7 ⊢ (𝜑 → 0 < 𝑁) |
| 19 | 12, 18 | ltned 11244 | . . . . . 6 ⊢ (𝜑 → 0 ≠ 𝑁) |
| 20 | 19 | necomd 2983 | . . . . 5 ⊢ (𝜑 → 𝑁 ≠ 0) |
| 21 | 8, 9, 11, 20 | mulne0d 11764 | . . . 4 ⊢ (𝜑 → (2 · 𝑁) ≠ 0) |
| 22 | knoppndvlem1.j | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ ℤ) | |
| 23 | 22 | znegcld 12574 | . . . 4 ⊢ (𝜑 → -𝐽 ∈ ℤ) |
| 24 | 7, 21, 23 | reexpclzd 14151 | . . 3 ⊢ (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℝ) |
| 25 | 24, 2, 11 | redivcld 11944 | . 2 ⊢ (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ) |
| 26 | knoppndvlem1.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 27 | 26 | zred 12572 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 28 | 25, 27 | remulcld 11137 | 1 ⊢ (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5086 (class class class)co 7341 ℝcr 11000 0cc0 11001 1c1 11002 · cmul 11006 < clt 11141 ≤ cle 11142 -cneg 11340 / cdiv 11769 ℕcn 12120 2c2 12175 ℤcz 12463 ↑cexp 13963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-n0 12377 df-z 12464 df-uz 12728 df-seq 13904 df-exp 13964 |
| This theorem is referenced by: knoppndvlem6 36551 knoppndvlem7 36552 knoppndvlem10 36555 knoppndvlem14 36559 knoppndvlem15 36560 knoppndvlem17 36562 |
| Copyright terms: Public domain | W3C validator |