MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abs1 Structured version   Visualization version   GIF version

Theorem abs1 15270
Description: The absolute value of one is one. (Contributed by David A. Wheeler, 16-Jul-2016.)
Assertion
Ref Expression
abs1 (abs‘1) = 1

Proof of Theorem abs1
StepHypRef Expression
1 1re 11181 . 2 1 ∈ ℝ
2 0le1 11708 . 2 0 ≤ 1
3 absid 15269 . 2 ((1 ∈ ℝ ∧ 0 ≤ 1) → (abs‘1) = 1)
41, 2, 3mp2an 692 1 (abs‘1) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  cr 11074  0cc0 11075  1c1 11076  cle 11216  abscabs 15207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209
This theorem is referenced by:  absexp  15277  absexpz  15278  iseraltlem3  15657  geolim  15843  geolim2  15844  georeclim  15845  geoisum1c  15853  efieq1re  16174  eirrlem  16179  nn0rppwr  16538  3lcm2e6woprm  16592  4sqlem13  16935  4sqlem19  16941  gzrngunit  21357  ncvsm1  25061  dvlipcn  25906  dvfsumabs  25936  geolim3  26254  abelthlem1  26348  abelthlem2  26349  coskpi  26439  sineq0  26440  logtayl  26576  abscxpbnd  26670  root1cj  26673  bndatandm  26846  lgamgulmlem2  26947  lgamgulmlem5  26950  mule1  27065  logfacbnd3  27141  dchrabs  27178  zabsle1  27214  lgslem2  27216  lgsfcl2  27221  lgseisen  27297  2sqlem9  27345  2sqlem10  27346  nvm1  30601  nvmtri  30607  normlem7tALT  31055  norm-ii-i  31073  normsubi  31077  constrinvcl  33770  qqhval2lem  33978  qqh0  33981  subfaclim  35182  lcm1un  42008  binomcxplemrat  44346  sineq0ALT  44933  fprodabs2  45600  modp2nep1  47372  modm1nem2  47374
  Copyright terms: Public domain W3C validator