MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abs1 Structured version   Visualization version   GIF version

Theorem abs1 15280
Description: The absolute value of one is one. (Contributed by David A. Wheeler, 16-Jul-2016.)
Assertion
Ref Expression
abs1 (abs‘1) = 1

Proof of Theorem abs1
StepHypRef Expression
1 1re 11246 . 2 1 ∈ ℝ
2 0le1 11769 . 2 0 ≤ 1
3 absid 15279 . 2 ((1 ∈ ℝ ∧ 0 ≤ 1) → (abs‘1) = 1)
41, 2, 3mp2an 690 1 (abs‘1) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098   class class class wbr 5149  cfv 6549  cr 11139  0cc0 11140  1c1 11141  cle 11281  abscabs 15217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9467  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-n0 12506  df-z 12592  df-uz 12856  df-rp 13010  df-seq 14003  df-exp 14063  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219
This theorem is referenced by:  absexp  15287  absexpz  15288  iseraltlem3  15666  geolim  15852  geolim2  15853  georeclim  15854  geoisum1c  15862  efieq1re  16179  eirrlem  16184  3lcm2e6woprm  16589  4sqlem13  16929  4sqlem19  16935  gzrngunit  21383  ncvsm1  25126  dvlipcn  25971  dvfsumabs  26001  geolim3  26319  abelthlem1  26413  abelthlem2  26414  coskpi  26502  sineq0  26503  logtayl  26639  abscxpbnd  26733  root1cj  26736  bndatandm  26906  lgamgulmlem2  27007  lgamgulmlem5  27010  mule1  27125  logfacbnd3  27201  dchrabs  27238  zabsle1  27274  lgslem2  27276  lgsfcl2  27281  lgseisen  27357  2sqlem9  27405  2sqlem10  27406  nvm1  30547  nvmtri  30553  normlem7tALT  31001  norm-ii-i  31019  normsubi  31023  qqhval2lem  33710  qqh0  33713  subfaclim  34926  lcm1un  41613  nn0rppwr  42025  binomcxplemrat  43926  sineq0ALT  44515  fprodabs2  45118
  Copyright terms: Public domain W3C validator