| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abs1 | Structured version Visualization version GIF version | ||
| Description: The absolute value of one is one. (Contributed by David A. Wheeler, 16-Jul-2016.) |
| Ref | Expression |
|---|---|
| abs1 | ⊢ (abs‘1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11112 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 0le1 11640 | . 2 ⊢ 0 ≤ 1 | |
| 3 | absid 15203 | . 2 ⊢ ((1 ∈ ℝ ∧ 0 ≤ 1) → (abs‘1) = 1) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (abs‘1) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 ℝcr 11005 0cc0 11006 1c1 11007 ≤ cle 11147 abscabs 15141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 |
| This theorem is referenced by: absexp 15211 absexpz 15212 iseraltlem3 15591 geolim 15777 geolim2 15778 georeclim 15779 geoisum1c 15787 efieq1re 16108 eirrlem 16113 nn0rppwr 16472 3lcm2e6woprm 16526 4sqlem13 16869 4sqlem19 16875 gzrngunit 21370 ncvsm1 25081 dvlipcn 25926 dvfsumabs 25956 geolim3 26274 abelthlem1 26368 abelthlem2 26369 coskpi 26459 sineq0 26460 logtayl 26596 abscxpbnd 26690 root1cj 26693 bndatandm 26866 lgamgulmlem2 26967 lgamgulmlem5 26970 mule1 27085 logfacbnd3 27161 dchrabs 27198 zabsle1 27234 lgslem2 27236 lgsfcl2 27241 lgseisen 27317 2sqlem9 27365 2sqlem10 27366 nvm1 30645 nvmtri 30651 normlem7tALT 31099 norm-ii-i 31117 normsubi 31121 constrinvcl 33786 qqhval2lem 33994 qqh0 33997 subfaclim 35232 lcm1un 42116 binomcxplemrat 44453 sineq0ALT 45039 fprodabs2 45705 modp2nep1 47477 modm1nem2 47479 |
| Copyright terms: Public domain | W3C validator |