Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lidlsubg | Structured version Visualization version GIF version |
Description: An ideal is a subgroup of the additive group. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
lidlcl.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
Ref | Expression |
---|---|
lidlsubg | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ (SubGrp‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | lidlcl.u | . . . 4 ⊢ 𝑈 = (LIdeal‘𝑅) | |
3 | 1, 2 | lidlss 20248 | . . 3 ⊢ (𝐼 ∈ 𝑈 → 𝐼 ⊆ (Base‘𝑅)) |
4 | 3 | adantl 485 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ⊆ (Base‘𝑅)) |
5 | eqid 2737 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
6 | 2, 5 | lidl0cl 20250 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (0g‘𝑅) ∈ 𝐼) |
7 | 6 | ne0d 4250 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ≠ ∅) |
8 | eqid 2737 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
9 | 2, 8 | lidlacl 20251 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → (𝑥(+g‘𝑅)𝑦) ∈ 𝐼) |
10 | 9 | anassrs 471 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) → (𝑥(+g‘𝑅)𝑦) ∈ 𝐼) |
11 | 10 | ralrimiva 3105 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 𝑥 ∈ 𝐼) → ∀𝑦 ∈ 𝐼 (𝑥(+g‘𝑅)𝑦) ∈ 𝐼) |
12 | eqid 2737 | . . . . . 6 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
13 | 2, 12 | lidlnegcl 20252 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑥 ∈ 𝐼) → ((invg‘𝑅)‘𝑥) ∈ 𝐼) |
14 | 13 | 3expa 1120 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 𝑥 ∈ 𝐼) → ((invg‘𝑅)‘𝑥) ∈ 𝐼) |
15 | 11, 14 | jca 515 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 𝑥 ∈ 𝐼) → (∀𝑦 ∈ 𝐼 (𝑥(+g‘𝑅)𝑦) ∈ 𝐼 ∧ ((invg‘𝑅)‘𝑥) ∈ 𝐼)) |
16 | 15 | ralrimiva 3105 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥(+g‘𝑅)𝑦) ∈ 𝐼 ∧ ((invg‘𝑅)‘𝑥) ∈ 𝐼)) |
17 | ringgrp 19567 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
18 | 17 | adantr 484 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝑅 ∈ Grp) |
19 | 1, 8, 12 | issubg2 18558 | . . 3 ⊢ (𝑅 ∈ Grp → (𝐼 ∈ (SubGrp‘𝑅) ↔ (𝐼 ⊆ (Base‘𝑅) ∧ 𝐼 ≠ ∅ ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥(+g‘𝑅)𝑦) ∈ 𝐼 ∧ ((invg‘𝑅)‘𝑥) ∈ 𝐼)))) |
20 | 18, 19 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐼 ∈ (SubGrp‘𝑅) ↔ (𝐼 ⊆ (Base‘𝑅) ∧ 𝐼 ≠ ∅ ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥(+g‘𝑅)𝑦) ∈ 𝐼 ∧ ((invg‘𝑅)‘𝑥) ∈ 𝐼)))) |
21 | 4, 7, 16, 20 | mpbir3and 1344 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ (SubGrp‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∀wral 3061 ⊆ wss 3866 ∅c0 4237 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 +gcplusg 16802 0gc0g 16944 Grpcgrp 18365 invgcminusg 18366 SubGrpcsubg 18537 Ringcrg 19562 LIdealclidl 20207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-sca 16818 df-vsca 16819 df-ip 16820 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-minusg 18369 df-sbg 18370 df-subg 18540 df-mgp 19505 df-ur 19517 df-ring 19564 df-subrg 19798 df-lmod 19901 df-lss 19969 df-sra 20209 df-rgmod 20210 df-lidl 20211 |
This theorem is referenced by: lidlsubcl 20254 2idlcpbl 20272 qus1 20273 qusrhm 20275 quscrng 20278 zndvds 20514 elrspunidl 31320 lidlnsg 31335 qsidomlem1 31342 qsidomlem2 31343 idlsrg0g 31365 idlsrgmnd 31373 idlsrgcmnd 31374 lidlabl 45155 |
Copyright terms: Public domain | W3C validator |