| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lidlsubg | Structured version Visualization version GIF version | ||
| Description: An ideal is a subgroup of the additive group. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| lidlcl.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
| Ref | Expression |
|---|---|
| lidlsubg | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ (SubGrp‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | lidlcl.u | . . . 4 ⊢ 𝑈 = (LIdeal‘𝑅) | |
| 3 | 1, 2 | lidlss 21142 | . . 3 ⊢ (𝐼 ∈ 𝑈 → 𝐼 ⊆ (Base‘𝑅)) |
| 4 | 3 | adantl 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ⊆ (Base‘𝑅)) |
| 5 | eqid 2730 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 6 | 2, 5 | lidl0cl 21150 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (0g‘𝑅) ∈ 𝐼) |
| 7 | 6 | ne0d 4290 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ≠ ∅) |
| 8 | eqid 2730 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 9 | 2, 8 | lidlacl 21151 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → (𝑥(+g‘𝑅)𝑦) ∈ 𝐼) |
| 10 | 9 | anassrs 467 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) → (𝑥(+g‘𝑅)𝑦) ∈ 𝐼) |
| 11 | 10 | ralrimiva 3122 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 𝑥 ∈ 𝐼) → ∀𝑦 ∈ 𝐼 (𝑥(+g‘𝑅)𝑦) ∈ 𝐼) |
| 12 | eqid 2730 | . . . . . 6 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
| 13 | 2, 12 | lidlnegcl 21152 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑥 ∈ 𝐼) → ((invg‘𝑅)‘𝑥) ∈ 𝐼) |
| 14 | 13 | 3expa 1118 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 𝑥 ∈ 𝐼) → ((invg‘𝑅)‘𝑥) ∈ 𝐼) |
| 15 | 11, 14 | jca 511 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 𝑥 ∈ 𝐼) → (∀𝑦 ∈ 𝐼 (𝑥(+g‘𝑅)𝑦) ∈ 𝐼 ∧ ((invg‘𝑅)‘𝑥) ∈ 𝐼)) |
| 16 | 15 | ralrimiva 3122 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥(+g‘𝑅)𝑦) ∈ 𝐼 ∧ ((invg‘𝑅)‘𝑥) ∈ 𝐼)) |
| 17 | ringgrp 20149 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 18 | 17 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝑅 ∈ Grp) |
| 19 | 1, 8, 12 | issubg2 19046 | . . 3 ⊢ (𝑅 ∈ Grp → (𝐼 ∈ (SubGrp‘𝑅) ↔ (𝐼 ⊆ (Base‘𝑅) ∧ 𝐼 ≠ ∅ ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥(+g‘𝑅)𝑦) ∈ 𝐼 ∧ ((invg‘𝑅)‘𝑥) ∈ 𝐼)))) |
| 20 | 18, 19 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐼 ∈ (SubGrp‘𝑅) ↔ (𝐼 ⊆ (Base‘𝑅) ∧ 𝐼 ≠ ∅ ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥(+g‘𝑅)𝑦) ∈ 𝐼 ∧ ((invg‘𝑅)‘𝑥) ∈ 𝐼)))) |
| 21 | 4, 7, 16, 20 | mpbir3and 1343 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ (SubGrp‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∀wral 3045 ⊆ wss 3900 ∅c0 4281 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 +gcplusg 17153 0gc0g 17335 Grpcgrp 18838 invgcminusg 18839 SubGrpcsubg 19025 Ringcrg 20144 LIdealclidl 21136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-sca 17169 df-vsca 17170 df-ip 17171 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 df-minusg 18842 df-sbg 18843 df-subg 19028 df-mgp 20052 df-ur 20093 df-ring 20146 df-subrg 20478 df-lmod 20788 df-lss 20858 df-sra 21100 df-rgmod 21101 df-lidl 21138 |
| This theorem is referenced by: lidlsubcl 21154 dflidl2 21157 lidlnsg 21178 df2idl2 21187 2idlcpbl 21202 qus1 21204 qusrhm 21206 qusmul2idl 21209 quscrng 21213 zndvds 21479 elrspunidl 33383 qsidomlem1 33407 qsidomlem2 33408 ssdifidlprm 33413 qsdrnglem2 33451 idlsrg0g 33461 idlsrgmnd 33469 idlsrgcmnd 33470 lidlabl 48242 lidlrng 48243 |
| Copyright terms: Public domain | W3C validator |