![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lidlsubg | Structured version Visualization version GIF version |
Description: An ideal is a subgroup of the additive group. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
lidlcl.u | β’ π = (LIdealβπ ) |
Ref | Expression |
---|---|
lidlsubg | β’ ((π β Ring β§ πΌ β π) β πΌ β (SubGrpβπ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . . 4 β’ (Baseβπ ) = (Baseβπ ) | |
2 | lidlcl.u | . . . 4 β’ π = (LIdealβπ ) | |
3 | 1, 2 | lidlss 21110 | . . 3 β’ (πΌ β π β πΌ β (Baseβπ )) |
4 | 3 | adantl 480 | . 2 β’ ((π β Ring β§ πΌ β π) β πΌ β (Baseβπ )) |
5 | eqid 2725 | . . . 4 β’ (0gβπ ) = (0gβπ ) | |
6 | 2, 5 | lidl0cl 21118 | . . 3 β’ ((π β Ring β§ πΌ β π) β (0gβπ ) β πΌ) |
7 | 6 | ne0d 4329 | . 2 β’ ((π β Ring β§ πΌ β π) β πΌ β β ) |
8 | eqid 2725 | . . . . . . 7 β’ (+gβπ ) = (+gβπ ) | |
9 | 2, 8 | lidlacl 21119 | . . . . . 6 β’ (((π β Ring β§ πΌ β π) β§ (π₯ β πΌ β§ π¦ β πΌ)) β (π₯(+gβπ )π¦) β πΌ) |
10 | 9 | anassrs 466 | . . . . 5 β’ ((((π β Ring β§ πΌ β π) β§ π₯ β πΌ) β§ π¦ β πΌ) β (π₯(+gβπ )π¦) β πΌ) |
11 | 10 | ralrimiva 3136 | . . . 4 β’ (((π β Ring β§ πΌ β π) β§ π₯ β πΌ) β βπ¦ β πΌ (π₯(+gβπ )π¦) β πΌ) |
12 | eqid 2725 | . . . . . 6 β’ (invgβπ ) = (invgβπ ) | |
13 | 2, 12 | lidlnegcl 21120 | . . . . 5 β’ ((π β Ring β§ πΌ β π β§ π₯ β πΌ) β ((invgβπ )βπ₯) β πΌ) |
14 | 13 | 3expa 1115 | . . . 4 β’ (((π β Ring β§ πΌ β π) β§ π₯ β πΌ) β ((invgβπ )βπ₯) β πΌ) |
15 | 11, 14 | jca 510 | . . 3 β’ (((π β Ring β§ πΌ β π) β§ π₯ β πΌ) β (βπ¦ β πΌ (π₯(+gβπ )π¦) β πΌ β§ ((invgβπ )βπ₯) β πΌ)) |
16 | 15 | ralrimiva 3136 | . 2 β’ ((π β Ring β§ πΌ β π) β βπ₯ β πΌ (βπ¦ β πΌ (π₯(+gβπ )π¦) β πΌ β§ ((invgβπ )βπ₯) β πΌ)) |
17 | ringgrp 20180 | . . . 4 β’ (π β Ring β π β Grp) | |
18 | 17 | adantr 479 | . . 3 β’ ((π β Ring β§ πΌ β π) β π β Grp) |
19 | 1, 8, 12 | issubg2 19098 | . . 3 β’ (π β Grp β (πΌ β (SubGrpβπ ) β (πΌ β (Baseβπ ) β§ πΌ β β β§ βπ₯ β πΌ (βπ¦ β πΌ (π₯(+gβπ )π¦) β πΌ β§ ((invgβπ )βπ₯) β πΌ)))) |
20 | 18, 19 | syl 17 | . 2 β’ ((π β Ring β§ πΌ β π) β (πΌ β (SubGrpβπ ) β (πΌ β (Baseβπ ) β§ πΌ β β β§ βπ₯ β πΌ (βπ¦ β πΌ (π₯(+gβπ )π¦) β πΌ β§ ((invgβπ )βπ₯) β πΌ)))) |
21 | 4, 7, 16, 20 | mpbir3and 1339 | 1 β’ ((π β Ring β§ πΌ β π) β πΌ β (SubGrpβπ )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2930 βwral 3051 β wss 3939 β c0 4316 βcfv 6541 (class class class)co 7414 Basecbs 17177 +gcplusg 17230 0gc0g 17418 Grpcgrp 18892 invgcminusg 18893 SubGrpcsubg 19077 Ringcrg 20175 LIdealclidl 21104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-sca 17246 df-vsca 17247 df-ip 17248 df-0g 17420 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-grp 18895 df-minusg 18896 df-sbg 18897 df-subg 19080 df-mgp 20077 df-ur 20124 df-ring 20177 df-subrg 20510 df-lmod 20747 df-lss 20818 df-sra 21060 df-rgmod 21061 df-lidl 21106 |
This theorem is referenced by: lidlsubcl 21122 dflidl2 21125 df2idl2 21153 2idlcpbl 21168 qus1 21170 qusrhm 21172 qusmul2 21173 quscrng 21177 zndvds 21485 qusmul 33135 lidlnsg 33156 elrspunidl 33165 qsidomlem1 33189 qsidomlem2 33190 qsdrnglem2 33228 idlsrg0g 33238 idlsrgmnd 33246 idlsrgcmnd 33247 lidlabl 47378 lidlrng 47379 |
Copyright terms: Public domain | W3C validator |