MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lidlsubg Structured version   Visualization version   GIF version

Theorem lidlsubg 21139
Description: An ideal is a subgroup of the additive group. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypothesis
Ref Expression
lidlcl.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
lidlsubg ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝐼 ∈ (SubGrp‘𝑅))

Proof of Theorem lidlsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 lidlcl.u . . . 4 𝑈 = (LIdeal‘𝑅)
31, 2lidlss 21128 . . 3 (𝐼𝑈𝐼 ⊆ (Base‘𝑅))
43adantl 481 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝐼 ⊆ (Base‘𝑅))
5 eqid 2730 . . . 4 (0g𝑅) = (0g𝑅)
62, 5lidl0cl 21136 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (0g𝑅) ∈ 𝐼)
76ne0d 4307 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝐼 ≠ ∅)
8 eqid 2730 . . . . . . 7 (+g𝑅) = (+g𝑅)
92, 8lidlacl 21137 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑥𝐼𝑦𝐼)) → (𝑥(+g𝑅)𝑦) ∈ 𝐼)
109anassrs 467 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ 𝑥𝐼) ∧ 𝑦𝐼) → (𝑥(+g𝑅)𝑦) ∈ 𝐼)
1110ralrimiva 3126 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ 𝑥𝐼) → ∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼)
12 eqid 2730 . . . . . 6 (invg𝑅) = (invg𝑅)
132, 12lidlnegcl 21138 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑥𝐼) → ((invg𝑅)‘𝑥) ∈ 𝐼)
14133expa 1118 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ 𝑥𝐼) → ((invg𝑅)‘𝑥) ∈ 𝐼)
1511, 14jca 511 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ 𝑥𝐼) → (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))
1615ralrimiva 3126 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ∀𝑥𝐼 (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))
17 ringgrp 20153 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
1817adantr 480 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝑅 ∈ Grp)
191, 8, 12issubg2 19079 . . 3 (𝑅 ∈ Grp → (𝐼 ∈ (SubGrp‘𝑅) ↔ (𝐼 ⊆ (Base‘𝑅) ∧ 𝐼 ≠ ∅ ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))))
2018, 19syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝐼 ∈ (SubGrp‘𝑅) ↔ (𝐼 ⊆ (Base‘𝑅) ∧ 𝐼 ≠ ∅ ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))))
214, 7, 16, 20mpbir3and 1343 1 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝐼 ∈ (SubGrp‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wss 3916  c0 4298  cfv 6513  (class class class)co 7389  Basecbs 17185  +gcplusg 17226  0gc0g 17408  Grpcgrp 18871  invgcminusg 18872  SubGrpcsubg 19058  Ringcrg 20148  LIdealclidl 21122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18874  df-minusg 18875  df-sbg 18876  df-subg 19061  df-mgp 20056  df-ur 20097  df-ring 20150  df-subrg 20485  df-lmod 20774  df-lss 20844  df-sra 21086  df-rgmod 21087  df-lidl 21124
This theorem is referenced by:  lidlsubcl  21140  dflidl2  21143  lidlnsg  21164  df2idl2  21173  2idlcpbl  21188  qus1  21190  qusrhm  21192  qusmul2idl  21195  quscrng  21199  zndvds  21465  elrspunidl  33405  qsidomlem1  33429  qsidomlem2  33430  ssdifidlprm  33435  qsdrnglem2  33473  idlsrg0g  33483  idlsrgmnd  33491  idlsrgcmnd  33492  lidlabl  48210  lidlrng  48211
  Copyright terms: Public domain W3C validator