Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem6 Structured version   Visualization version   GIF version

Theorem mapdpglem6 41584
Description: Lemma for mapdpg 41612. Baer p. 45, line 4: "If g were 0, then t would be in (Fy)*..." (Contributed by NM, 18-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpglem4.q 𝑄 = (0g𝑈)
mapdpglem.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpglem4.jt (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
mapdpglem4.z 0 = (0g𝐴)
mapdpglem4.g4 (𝜑𝑔𝐵)
mapdpglem4.z4 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
mapdpglem4.t4 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
mapdpglem4.xn (𝜑𝑋𝑄)
mapdpglem4.g0 (𝜑𝑔 = 0 )
Assertion
Ref Expression
mapdpglem6 (𝜑𝑡 ∈ (𝑀‘(𝑁‘{𝑌})))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝐵,𝑔   𝑧,𝑔,𝐶   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   · ,𝑔,𝑧   𝑔,𝑌,𝑧,𝑡
Allowed substitution hints:   𝜑(𝑧,𝑡,𝑔)   𝐴(𝑧,𝑡,𝑔)   𝐵(𝑧,𝑡)   (𝑧,𝑡,𝑔)   𝑄(𝑧,𝑡,𝑔)   𝑅(𝑡)   · (𝑡)   𝑈(𝑧,𝑡,𝑔)   𝐹(𝑧,𝑡)   𝐺(𝑡)   𝐻(𝑧,𝑡,𝑔)   𝐾(𝑧,𝑡,𝑔)   (𝑧,𝑔)   𝑉(𝑧,𝑡,𝑔)   𝑊(𝑧,𝑡,𝑔)   𝑋(𝑧,𝑔)   0 (𝑧,𝑡,𝑔)

Proof of Theorem mapdpglem6
StepHypRef Expression
1 mapdpglem4.t4 . 2 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
2 mapdpglem.h . . . 4 𝐻 = (LHyp‘𝐾)
3 mapdpglem.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
4 mapdpglem.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
52, 3, 4lcdlmod 41498 . . 3 (𝜑𝐶 ∈ LMod)
6 mapdpglem.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
7 mapdpglem.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
8 eqid 2734 . . . 4 (LSubSp‘𝑈) = (LSubSp‘𝑈)
9 eqid 2734 . . . 4 (LSubSp‘𝐶) = (LSubSp‘𝐶)
102, 7, 4dvhlmod 41016 . . . . 5 (𝜑𝑈 ∈ LMod)
11 mapdpglem.y . . . . 5 (𝜑𝑌𝑉)
12 mapdpglem.v . . . . . 6 𝑉 = (Base‘𝑈)
13 mapdpglem.n . . . . . 6 𝑁 = (LSpan‘𝑈)
1412, 8, 13lspsncl 20993 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
1510, 11, 14syl2anc 583 . . . 4 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
162, 6, 7, 8, 3, 9, 4, 15mapdcl2 41562 . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶))
17 mapdpglem4.g0 . . . . . 6 (𝜑𝑔 = 0 )
1817oveq1d 7460 . . . . 5 (𝜑 → (𝑔 · 𝐺) = ( 0 · 𝐺))
19 mapdpglem3.a . . . . . 6 𝐴 = (Scalar‘𝑈)
20 mapdpglem4.z . . . . . 6 0 = (0g𝐴)
21 mapdpglem3.f . . . . . 6 𝐹 = (Base‘𝐶)
22 mapdpglem3.t . . . . . 6 · = ( ·𝑠𝐶)
23 eqid 2734 . . . . . 6 (0g𝐶) = (0g𝐶)
24 mapdpglem3.g . . . . . 6 (𝜑𝐺𝐹)
252, 7, 19, 20, 3, 21, 22, 23, 4, 24lcd0vs 41521 . . . . 5 (𝜑 → ( 0 · 𝐺) = (0g𝐶))
2618, 25eqtrd 2774 . . . 4 (𝜑 → (𝑔 · 𝐺) = (0g𝐶))
2723, 9lss0cl 20963 . . . . 5 ((𝐶 ∈ LMod ∧ (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶)) → (0g𝐶) ∈ (𝑀‘(𝑁‘{𝑌})))
285, 16, 27syl2anc 583 . . . 4 (𝜑 → (0g𝐶) ∈ (𝑀‘(𝑁‘{𝑌})))
2926, 28eqeltrd 2838 . . 3 (𝜑 → (𝑔 · 𝐺) ∈ (𝑀‘(𝑁‘{𝑌})))
30 mapdpglem4.z4 . . 3 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
31 mapdpglem3.r . . . 4 𝑅 = (-g𝐶)
3231, 9lssvsubcl 20960 . . 3 (((𝐶 ∈ LMod ∧ (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶)) ∧ ((𝑔 · 𝐺) ∈ (𝑀‘(𝑁‘{𝑌})) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))) → ((𝑔 · 𝐺)𝑅𝑧) ∈ (𝑀‘(𝑁‘{𝑌})))
335, 16, 29, 30, 32syl22anc 838 . 2 (𝜑 → ((𝑔 · 𝐺)𝑅𝑧) ∈ (𝑀‘(𝑁‘{𝑌})))
341, 33eqeltrd 2838 1 (𝜑𝑡 ∈ (𝑀‘(𝑁‘{𝑌})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2103  wne 2942  {csn 4648  cfv 6572  (class class class)co 7445  Basecbs 17253  Scalarcsca 17309   ·𝑠 cvsca 17310  0gc0g 17494  -gcsg 18970  LSSumclsm 19671  LModclmod 20875  LSubSpclss 20947  LSpanclspn 20987  HLchlt 39255  LHypclh 39890  DVecHcdvh 40984  LCDualclcd 41492  mapdcmpd 41530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257  ax-riotaBAD 38858
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-iin 5022  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-of 7710  df-om 7900  df-1st 8026  df-2nd 8027  df-tpos 8263  df-undef 8310  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-2o 8519  df-er 8759  df-map 8882  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-nn 12290  df-2 12352  df-3 12353  df-4 12354  df-5 12355  df-6 12356  df-n0 12550  df-z 12636  df-uz 12900  df-fz 13564  df-struct 17189  df-sets 17206  df-slot 17224  df-ndx 17236  df-base 17254  df-ress 17283  df-plusg 17319  df-mulr 17320  df-sca 17322  df-vsca 17323  df-0g 17496  df-mre 17639  df-mrc 17640  df-acs 17642  df-proset 18360  df-poset 18378  df-plt 18395  df-lub 18411  df-glb 18412  df-join 18413  df-meet 18414  df-p0 18490  df-p1 18491  df-lat 18497  df-clat 18564  df-mgm 18673  df-sgrp 18752  df-mnd 18768  df-submnd 18814  df-grp 18971  df-minusg 18972  df-sbg 18973  df-subg 19158  df-cntz 19352  df-oppg 19381  df-lsm 19673  df-cmn 19819  df-abl 19820  df-mgp 20157  df-rng 20175  df-ur 20204  df-ring 20257  df-oppr 20355  df-dvdsr 20378  df-unit 20379  df-invr 20409  df-dvr 20422  df-nzr 20534  df-rlreg 20711  df-domn 20712  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lvec 21120  df-lsatoms 38881  df-lshyp 38882  df-lcv 38924  df-lfl 38963  df-lkr 38991  df-ldual 39029  df-oposet 39081  df-ol 39083  df-oml 39084  df-covers 39171  df-ats 39172  df-atl 39203  df-cvlat 39227  df-hlat 39256  df-llines 39404  df-lplanes 39405  df-lvols 39406  df-lines 39407  df-psubsp 39409  df-pmap 39410  df-padd 39702  df-lhyp 39894  df-laut 39895  df-ldil 40010  df-ltrn 40011  df-trl 40065  df-tgrp 40649  df-tendo 40661  df-edring 40663  df-dveca 40909  df-disoa 40935  df-dvech 40985  df-dib 41045  df-dic 41079  df-dih 41135  df-doch 41254  df-djh 41301  df-lcdual 41493  df-mapd 41531
This theorem is referenced by:  mapdpglem8  41585
  Copyright terms: Public domain W3C validator