Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem6 Structured version   Visualization version   GIF version

Theorem mapdpglem6 40865
Description: Lemma for mapdpg 40893. Baer p. 45, line 4: "If g were 0, then t would be in (Fy)*..." (Contributed by NM, 18-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpglem4.q 𝑄 = (0g𝑈)
mapdpglem.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpglem4.jt (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
mapdpglem4.z 0 = (0g𝐴)
mapdpglem4.g4 (𝜑𝑔𝐵)
mapdpglem4.z4 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
mapdpglem4.t4 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
mapdpglem4.xn (𝜑𝑋𝑄)
mapdpglem4.g0 (𝜑𝑔 = 0 )
Assertion
Ref Expression
mapdpglem6 (𝜑𝑡 ∈ (𝑀‘(𝑁‘{𝑌})))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝐵,𝑔   𝑧,𝑔,𝐶   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   · ,𝑔,𝑧   𝑔,𝑌,𝑧,𝑡
Allowed substitution hints:   𝜑(𝑧,𝑡,𝑔)   𝐴(𝑧,𝑡,𝑔)   𝐵(𝑧,𝑡)   (𝑧,𝑡,𝑔)   𝑄(𝑧,𝑡,𝑔)   𝑅(𝑡)   · (𝑡)   𝑈(𝑧,𝑡,𝑔)   𝐹(𝑧,𝑡)   𝐺(𝑡)   𝐻(𝑧,𝑡,𝑔)   𝐾(𝑧,𝑡,𝑔)   (𝑧,𝑔)   𝑉(𝑧,𝑡,𝑔)   𝑊(𝑧,𝑡,𝑔)   𝑋(𝑧,𝑔)   0 (𝑧,𝑡,𝑔)

Proof of Theorem mapdpglem6
StepHypRef Expression
1 mapdpglem4.t4 . 2 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
2 mapdpglem.h . . . 4 𝐻 = (LHyp‘𝐾)
3 mapdpglem.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
4 mapdpglem.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
52, 3, 4lcdlmod 40779 . . 3 (𝜑𝐶 ∈ LMod)
6 mapdpglem.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
7 mapdpglem.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
8 eqid 2731 . . . 4 (LSubSp‘𝑈) = (LSubSp‘𝑈)
9 eqid 2731 . . . 4 (LSubSp‘𝐶) = (LSubSp‘𝐶)
102, 7, 4dvhlmod 40297 . . . . 5 (𝜑𝑈 ∈ LMod)
11 mapdpglem.y . . . . 5 (𝜑𝑌𝑉)
12 mapdpglem.v . . . . . 6 𝑉 = (Base‘𝑈)
13 mapdpglem.n . . . . . 6 𝑁 = (LSpan‘𝑈)
1412, 8, 13lspsncl 20736 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
1510, 11, 14syl2anc 583 . . . 4 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
162, 6, 7, 8, 3, 9, 4, 15mapdcl2 40843 . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶))
17 mapdpglem4.g0 . . . . . 6 (𝜑𝑔 = 0 )
1817oveq1d 7427 . . . . 5 (𝜑 → (𝑔 · 𝐺) = ( 0 · 𝐺))
19 mapdpglem3.a . . . . . 6 𝐴 = (Scalar‘𝑈)
20 mapdpglem4.z . . . . . 6 0 = (0g𝐴)
21 mapdpglem3.f . . . . . 6 𝐹 = (Base‘𝐶)
22 mapdpglem3.t . . . . . 6 · = ( ·𝑠𝐶)
23 eqid 2731 . . . . . 6 (0g𝐶) = (0g𝐶)
24 mapdpglem3.g . . . . . 6 (𝜑𝐺𝐹)
252, 7, 19, 20, 3, 21, 22, 23, 4, 24lcd0vs 40802 . . . . 5 (𝜑 → ( 0 · 𝐺) = (0g𝐶))
2618, 25eqtrd 2771 . . . 4 (𝜑 → (𝑔 · 𝐺) = (0g𝐶))
2723, 9lss0cl 20705 . . . . 5 ((𝐶 ∈ LMod ∧ (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶)) → (0g𝐶) ∈ (𝑀‘(𝑁‘{𝑌})))
285, 16, 27syl2anc 583 . . . 4 (𝜑 → (0g𝐶) ∈ (𝑀‘(𝑁‘{𝑌})))
2926, 28eqeltrd 2832 . . 3 (𝜑 → (𝑔 · 𝐺) ∈ (𝑀‘(𝑁‘{𝑌})))
30 mapdpglem4.z4 . . 3 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
31 mapdpglem3.r . . . 4 𝑅 = (-g𝐶)
3231, 9lssvsubcl 20702 . . 3 (((𝐶 ∈ LMod ∧ (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶)) ∧ ((𝑔 · 𝐺) ∈ (𝑀‘(𝑁‘{𝑌})) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))) → ((𝑔 · 𝐺)𝑅𝑧) ∈ (𝑀‘(𝑁‘{𝑌})))
335, 16, 29, 30, 32syl22anc 836 . 2 (𝜑 → ((𝑔 · 𝐺)𝑅𝑧) ∈ (𝑀‘(𝑁‘{𝑌})))
341, 33eqeltrd 2832 1 (𝜑𝑡 ∈ (𝑀‘(𝑁‘{𝑌})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wne 2939  {csn 4628  cfv 6543  (class class class)co 7412  Basecbs 17151  Scalarcsca 17207   ·𝑠 cvsca 17208  0gc0g 17392  -gcsg 18860  LSSumclsm 19547  LModclmod 20618  LSubSpclss 20690  LSpanclspn 20730  HLchlt 38536  LHypclh 39171  DVecHcdvh 40265  LCDualclcd 40773  mapdcmpd 40811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-riotaBAD 38139
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-tpos 8217  df-undef 8264  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-n0 12480  df-z 12566  df-uz 12830  df-fz 13492  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-sca 17220  df-vsca 17221  df-0g 17394  df-mre 17537  df-mrc 17538  df-acs 17540  df-proset 18255  df-poset 18273  df-plt 18290  df-lub 18306  df-glb 18307  df-join 18308  df-meet 18309  df-p0 18385  df-p1 18386  df-lat 18392  df-clat 18459  df-mgm 18568  df-sgrp 18647  df-mnd 18663  df-submnd 18709  df-grp 18861  df-minusg 18862  df-sbg 18863  df-subg 19043  df-cntz 19226  df-oppg 19255  df-lsm 19549  df-cmn 19695  df-abl 19696  df-mgp 20033  df-rng 20051  df-ur 20080  df-ring 20133  df-oppr 20229  df-dvdsr 20252  df-unit 20253  df-invr 20283  df-dvr 20296  df-drng 20506  df-lmod 20620  df-lss 20691  df-lsp 20731  df-lvec 20862  df-lsatoms 38162  df-lshyp 38163  df-lcv 38205  df-lfl 38244  df-lkr 38272  df-ldual 38310  df-oposet 38362  df-ol 38364  df-oml 38365  df-covers 38452  df-ats 38453  df-atl 38484  df-cvlat 38508  df-hlat 38537  df-llines 38685  df-lplanes 38686  df-lvols 38687  df-lines 38688  df-psubsp 38690  df-pmap 38691  df-padd 38983  df-lhyp 39175  df-laut 39176  df-ldil 39291  df-ltrn 39292  df-trl 39346  df-tgrp 39930  df-tendo 39942  df-edring 39944  df-dveca 40190  df-disoa 40216  df-dvech 40266  df-dib 40326  df-dic 40360  df-dih 40416  df-doch 40535  df-djh 40582  df-lcdual 40774  df-mapd 40812
This theorem is referenced by:  mapdpglem8  40866
  Copyright terms: Public domain W3C validator