MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pczndvds2 Structured version   Visualization version   GIF version

Theorem pczndvds2 16059
Description: The remainder after dividing out all factors of 𝑃 is not divisible by 𝑃. (Contributed by Mario Carneiro, 9-Sep-2014.)
Assertion
Ref Expression
pczndvds2 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))))

Proof of Theorem pczndvds2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 prmuz2 15896 . . 3 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
2 eqid 2779 . . . 4 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
3 eqid 2779 . . . 4 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}, ℝ, < )
42, 3pcprendvds2 16034 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}, ℝ, < ))))
51, 4sylan 572 . 2 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}, ℝ, < ))))
63pczpre 16040 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}, ℝ, < ))
76oveq2d 6992 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝑁)) = (𝑃↑sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}, ℝ, < )))
87oveq2d 6992 . . 3 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) = (𝑁 / (𝑃↑sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}, ℝ, < ))))
98breq2d 4941 . 2 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ↔ 𝑃 ∥ (𝑁 / (𝑃↑sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}, ℝ, < )))))
105, 9mtbird 317 1 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  wcel 2050  wne 2968  {crab 3093   class class class wbr 4929  cfv 6188  (class class class)co 6976  supcsup 8699  cr 10334  0cc0 10335   < clt 10474   / cdiv 11098  2c2 11495  0cn0 11707  cz 11793  cuz 12058  cexp 13244  cdvds 15467  cprime 15871   pCnt cpc 16029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-2o 7906  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-sup 8701  df-inf 8702  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-n0 11708  df-z 11794  df-uz 12059  df-q 12163  df-rp 12205  df-fl 12977  df-mod 13053  df-seq 13185  df-exp 13245  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-dvds 15468  df-gcd 15704  df-prm 15872  df-pc 16030
This theorem is referenced by:  pcndvds2  16060  pcadd  16081
  Copyright terms: Public domain W3C validator