| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmuz2 | Structured version Visualization version GIF version | ||
| Description: A prime number is an integer greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.) |
| Ref | Expression |
|---|---|
| prmuz2 | ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm4 16631 | . 2 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑥 ∈ (ℤ≥‘2)(𝑥 ∥ 𝑃 → 𝑥 = 𝑃))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5102 ‘cfv 6499 2c2 12219 ℤ≥cuz 12771 ∥ cdvds 16199 ℙcprime 16618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-n0 12421 df-z 12508 df-uz 12772 df-rp 12930 df-seq 13945 df-exp 14005 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-dvds 16200 df-prm 16619 |
| This theorem is referenced by: prmgt1 16644 prmm2nn0 16645 oddprmgt2 16646 sqnprm 16649 isprm5 16654 isprm7 16655 prmrp 16659 isprm6 16661 prmdvdsexpb 16663 prmdvdsncoprmbd 16674 prmdiv 16732 prmdiveq 16733 modprm1div 16745 oddprm 16758 pcpremul 16791 pceulem 16793 pczpre 16795 pczcl 16796 pc1 16803 pczdvds 16811 pczndvds 16813 pczndvds2 16815 pcidlem 16820 pcmpt 16840 pcfaclem 16846 pcfac 16847 pockthlem 16853 pockthg 16854 prmunb 16862 prmreclem2 16865 prmgapprmolem 17009 odcau 19519 sylow3lem6 19547 gexexlem 19767 znfld 21503 logbprmirr 26740 wilthlem1 27012 wilthlem3 27014 wilth 27015 ppisval 27048 ppisval2 27049 chtge0 27056 isppw 27058 ppiprm 27095 chtprm 27097 chtwordi 27100 vma1 27110 fsumvma2 27159 chpval2 27163 chpchtsum 27164 chpub 27165 mersenne 27172 perfect1 27173 bposlem1 27229 lgslem1 27242 lgsval2lem 27252 lgsdirprm 27276 lgsne0 27280 lgsqrlem2 27292 gausslemma2dlem0b 27302 gausslemma2dlem4 27314 lgseisenlem1 27320 lgseisenlem3 27322 lgseisen 27324 lgsquadlem3 27327 m1lgs 27333 2sqblem 27376 chtppilimlem1 27418 rplogsumlem2 27430 rpvmasumlem 27432 dchrisum0flblem2 27454 padicabvcxp 27577 ostth3 27583 umgrhashecclwwlk 30058 aks4d1p6 42063 aks6d1c7 42166 fmtnoprmfac1 47560 fmtnoprmfac2lem1 47561 lighneallem2 47601 lighneallem4 47605 gbowgt5 47757 ztprmneprm 48329 |
| Copyright terms: Public domain | W3C validator |