| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmuz2 | Structured version Visualization version GIF version | ||
| Description: A prime number is an integer greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.) |
| Ref | Expression |
|---|---|
| prmuz2 | ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm4 16661 | . 2 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑥 ∈ (ℤ≥‘2)(𝑥 ∥ 𝑃 → 𝑥 = 𝑃))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3045 class class class wbr 5110 ‘cfv 6514 2c2 12248 ℤ≥cuz 12800 ∥ cdvds 16229 ℙcprime 16648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-prm 16649 |
| This theorem is referenced by: prmgt1 16674 prmm2nn0 16675 oddprmgt2 16676 sqnprm 16679 isprm5 16684 isprm7 16685 prmrp 16689 isprm6 16691 prmdvdsexpb 16693 prmdvdsncoprmbd 16704 prmdiv 16762 prmdiveq 16763 modprm1div 16775 oddprm 16788 pcpremul 16821 pceulem 16823 pczpre 16825 pczcl 16826 pc1 16833 pczdvds 16841 pczndvds 16843 pczndvds2 16845 pcidlem 16850 pcmpt 16870 pcfaclem 16876 pcfac 16877 pockthlem 16883 pockthg 16884 prmunb 16892 prmreclem2 16895 prmgapprmolem 17039 odcau 19541 sylow3lem6 19569 gexexlem 19789 znfld 21477 logbprmirr 26713 wilthlem1 26985 wilthlem3 26987 wilth 26988 ppisval 27021 ppisval2 27022 chtge0 27029 isppw 27031 ppiprm 27068 chtprm 27070 chtwordi 27073 vma1 27083 fsumvma2 27132 chpval2 27136 chpchtsum 27137 chpub 27138 mersenne 27145 perfect1 27146 bposlem1 27202 lgslem1 27215 lgsval2lem 27225 lgsdirprm 27249 lgsne0 27253 lgsqrlem2 27265 gausslemma2dlem0b 27275 gausslemma2dlem4 27287 lgseisenlem1 27293 lgseisenlem3 27295 lgseisen 27297 lgsquadlem3 27300 m1lgs 27306 2sqblem 27349 chtppilimlem1 27391 rplogsumlem2 27403 rpvmasumlem 27405 dchrisum0flblem2 27427 padicabvcxp 27550 ostth3 27556 umgrhashecclwwlk 30014 aks4d1p6 42076 aks6d1c7 42179 fmtnoprmfac1 47570 fmtnoprmfac2lem1 47571 lighneallem2 47611 lighneallem4 47615 gbowgt5 47767 ztprmneprm 48339 |
| Copyright terms: Public domain | W3C validator |