Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prmuz2 | Structured version Visualization version GIF version |
Description: A prime number is an integer greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.) |
Ref | Expression |
---|---|
prmuz2 | ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isprm4 16387 | . 2 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑥 ∈ (ℤ≥‘2)(𝑥 ∥ 𝑃 → 𝑥 = 𝑃))) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ∀wral 3066 class class class wbr 5079 ‘cfv 6432 2c2 12028 ℤ≥cuz 12581 ∥ cdvds 15961 ℙcprime 16374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-2o 8289 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-sup 9179 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12582 df-rp 12730 df-seq 13720 df-exp 13781 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-dvds 15962 df-prm 16375 |
This theorem is referenced by: prmgt1 16400 prmm2nn0 16401 oddprmgt2 16402 sqnprm 16405 isprm5 16410 isprm7 16411 prmrp 16415 isprm6 16417 prmdvdsexpb 16419 prmdvdsncoprmbd 16429 prmdiv 16484 prmdiveq 16485 modprm1div 16496 oddprm 16509 pcpremul 16542 pceulem 16544 pczpre 16546 pczcl 16547 pc1 16554 pczdvds 16562 pczndvds 16564 pczndvds2 16566 pcidlem 16571 pcmpt 16591 pcfaclem 16597 pcfac 16598 pockthlem 16604 pockthg 16605 prmunb 16613 prmreclem2 16616 prmgapprmolem 16760 odcau 19207 sylow3lem6 19235 gexexlem 19451 znfld 20766 logbprmirr 25944 wilthlem1 26215 wilthlem3 26217 wilth 26218 ppisval 26251 ppisval2 26252 chtge0 26259 isppw 26261 ppiprm 26298 chtprm 26300 chtwordi 26303 vma1 26313 fsumvma2 26360 chpval2 26364 chpchtsum 26365 chpub 26366 mersenne 26373 perfect1 26374 bposlem1 26430 lgslem1 26443 lgsval2lem 26453 lgsdirprm 26477 lgsne0 26481 lgsqrlem2 26493 gausslemma2dlem0b 26503 gausslemma2dlem4 26515 lgseisenlem1 26521 lgseisenlem3 26523 lgseisen 26525 lgsquadlem3 26528 m1lgs 26534 2sqblem 26577 chtppilimlem1 26619 rplogsumlem2 26631 rpvmasumlem 26633 dchrisum0flblem2 26655 padicabvcxp 26778 ostth3 26784 umgrhashecclwwlk 28438 aks4d1p6 40086 fmtnoprmfac1 44986 fmtnoprmfac2lem1 44987 lighneallem2 45027 lighneallem4 45031 gbowgt5 45183 ztprmneprm 45652 |
Copyright terms: Public domain | W3C validator |