| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmuz2 | Structured version Visualization version GIF version | ||
| Description: A prime number is an integer greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.) |
| Ref | Expression |
|---|---|
| prmuz2 | ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm4 16630 | . 2 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑥 ∈ (ℤ≥‘2)(𝑥 ∥ 𝑃 → 𝑥 = 𝑃))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5102 ‘cfv 6499 2c2 12217 ℤ≥cuz 12769 ∥ cdvds 16198 ℙcprime 16617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-prm 16618 |
| This theorem is referenced by: prmgt1 16643 prmm2nn0 16644 oddprmgt2 16645 sqnprm 16648 isprm5 16653 isprm7 16654 prmrp 16658 isprm6 16660 prmdvdsexpb 16662 prmdvdsncoprmbd 16673 prmdiv 16731 prmdiveq 16732 modprm1div 16744 oddprm 16757 pcpremul 16790 pceulem 16792 pczpre 16794 pczcl 16795 pc1 16802 pczdvds 16810 pczndvds 16812 pczndvds2 16814 pcidlem 16819 pcmpt 16839 pcfaclem 16845 pcfac 16846 pockthlem 16852 pockthg 16853 prmunb 16861 prmreclem2 16864 prmgapprmolem 17008 odcau 19518 sylow3lem6 19546 gexexlem 19766 znfld 21502 logbprmirr 26739 wilthlem1 27011 wilthlem3 27013 wilth 27014 ppisval 27047 ppisval2 27048 chtge0 27055 isppw 27057 ppiprm 27094 chtprm 27096 chtwordi 27099 vma1 27109 fsumvma2 27158 chpval2 27162 chpchtsum 27163 chpub 27164 mersenne 27171 perfect1 27172 bposlem1 27228 lgslem1 27241 lgsval2lem 27251 lgsdirprm 27275 lgsne0 27279 lgsqrlem2 27291 gausslemma2dlem0b 27301 gausslemma2dlem4 27313 lgseisenlem1 27319 lgseisenlem3 27321 lgseisen 27323 lgsquadlem3 27326 m1lgs 27332 2sqblem 27375 chtppilimlem1 27417 rplogsumlem2 27429 rpvmasumlem 27431 dchrisum0flblem2 27453 padicabvcxp 27576 ostth3 27582 umgrhashecclwwlk 30057 aks4d1p6 42062 aks6d1c7 42165 fmtnoprmfac1 47559 fmtnoprmfac2lem1 47560 lighneallem2 47600 lighneallem4 47604 gbowgt5 47756 ztprmneprm 48328 |
| Copyright terms: Public domain | W3C validator |