Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prmuz2 | Structured version Visualization version GIF version |
Description: A prime number is an integer greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.) |
Ref | Expression |
---|---|
prmuz2 | ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isprm4 16398 | . 2 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑥 ∈ (ℤ≥‘2)(𝑥 ∥ 𝑃 → 𝑥 = 𝑃))) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∀wral 3065 class class class wbr 5075 ‘cfv 6437 2c2 12037 ℤ≥cuz 12591 ∥ cdvds 15972 ℙcprime 16385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 ax-pre-sup 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-2o 8307 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-sup 9210 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-div 11642 df-nn 11983 df-2 12045 df-3 12046 df-n0 12243 df-z 12329 df-uz 12592 df-rp 12740 df-seq 13731 df-exp 13792 df-cj 14819 df-re 14820 df-im 14821 df-sqrt 14955 df-abs 14956 df-dvds 15973 df-prm 16386 |
This theorem is referenced by: prmgt1 16411 prmm2nn0 16412 oddprmgt2 16413 sqnprm 16416 isprm5 16421 isprm7 16422 prmrp 16426 isprm6 16428 prmdvdsexpb 16430 prmdvdsncoprmbd 16440 prmdiv 16495 prmdiveq 16496 modprm1div 16507 oddprm 16520 pcpremul 16553 pceulem 16555 pczpre 16557 pczcl 16558 pc1 16565 pczdvds 16573 pczndvds 16575 pczndvds2 16577 pcidlem 16582 pcmpt 16602 pcfaclem 16608 pcfac 16609 pockthlem 16615 pockthg 16616 prmunb 16624 prmreclem2 16627 prmgapprmolem 16771 odcau 19218 sylow3lem6 19246 gexexlem 19462 znfld 20777 logbprmirr 25955 wilthlem1 26226 wilthlem3 26228 wilth 26229 ppisval 26262 ppisval2 26263 chtge0 26270 isppw 26272 ppiprm 26309 chtprm 26311 chtwordi 26314 vma1 26324 fsumvma2 26371 chpval2 26375 chpchtsum 26376 chpub 26377 mersenne 26384 perfect1 26385 bposlem1 26441 lgslem1 26454 lgsval2lem 26464 lgsdirprm 26488 lgsne0 26492 lgsqrlem2 26504 gausslemma2dlem0b 26514 gausslemma2dlem4 26526 lgseisenlem1 26532 lgseisenlem3 26534 lgseisen 26536 lgsquadlem3 26539 m1lgs 26545 2sqblem 26588 chtppilimlem1 26630 rplogsumlem2 26642 rpvmasumlem 26644 dchrisum0flblem2 26666 padicabvcxp 26789 ostth3 26795 umgrhashecclwwlk 28451 aks4d1p6 40096 fmtnoprmfac1 45028 fmtnoprmfac2lem1 45029 lighneallem2 45069 lighneallem4 45073 gbowgt5 45225 ztprmneprm 45694 |
Copyright terms: Public domain | W3C validator |