Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prmuz2 | Structured version Visualization version GIF version |
Description: A prime number is an integer greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.) |
Ref | Expression |
---|---|
prmuz2 | ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isprm4 16317 | . 2 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑥 ∈ (ℤ≥‘2)(𝑥 ∥ 𝑃 → 𝑥 = 𝑃))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∀wral 3063 class class class wbr 5070 ‘cfv 6418 2c2 11958 ℤ≥cuz 12511 ∥ cdvds 15891 ℙcprime 16304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-prm 16305 |
This theorem is referenced by: prmgt1 16330 prmm2nn0 16331 oddprmgt2 16332 sqnprm 16335 isprm5 16340 isprm7 16341 prmrp 16345 isprm6 16347 prmdvdsexpb 16349 prmdvdsncoprmbd 16359 prmdiv 16414 prmdiveq 16415 modprm1div 16426 oddprm 16439 pcpremul 16472 pceulem 16474 pczpre 16476 pczcl 16477 pc1 16484 pczdvds 16492 pczndvds 16494 pczndvds2 16496 pcidlem 16501 pcmpt 16521 pcfaclem 16527 pcfac 16528 pockthlem 16534 pockthg 16535 prmunb 16543 prmreclem2 16546 prmgapprmolem 16690 odcau 19124 sylow3lem6 19152 gexexlem 19368 znfld 20680 logbprmirr 25851 wilthlem1 26122 wilthlem3 26124 wilth 26125 ppisval 26158 ppisval2 26159 chtge0 26166 isppw 26168 ppiprm 26205 chtprm 26207 chtwordi 26210 vma1 26220 fsumvma2 26267 chpval2 26271 chpchtsum 26272 chpub 26273 mersenne 26280 perfect1 26281 bposlem1 26337 lgslem1 26350 lgsval2lem 26360 lgsdirprm 26384 lgsne0 26388 lgsqrlem2 26400 gausslemma2dlem0b 26410 gausslemma2dlem4 26422 lgseisenlem1 26428 lgseisenlem3 26430 lgseisen 26432 lgsquadlem3 26435 m1lgs 26441 2sqblem 26484 chtppilimlem1 26526 rplogsumlem2 26538 rpvmasumlem 26540 dchrisum0flblem2 26562 padicabvcxp 26685 ostth3 26691 umgrhashecclwwlk 28343 aks4d1p6 40017 fmtnoprmfac1 44905 fmtnoprmfac2lem1 44906 lighneallem2 44946 lighneallem4 44950 gbowgt5 45102 ztprmneprm 45571 |
Copyright terms: Public domain | W3C validator |