![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1plusgpropd | Structured version Visualization version GIF version |
Description: Property deduction for univariate polynomial addition. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
Ref | Expression |
---|---|
ply1baspropd.b1 | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
ply1baspropd.b2 | ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) |
ply1baspropd.p | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) |
Ref | Expression |
---|---|
ply1plusgpropd | ⊢ (𝜑 → (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1baspropd.b1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
2 | ply1baspropd.b2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) | |
3 | ply1baspropd.p | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) | |
4 | 1, 2, 3 | psrplusgpropd 22158 | . . 3 ⊢ (𝜑 → (+g‘(1o mPwSer 𝑅)) = (+g‘(1o mPwSer 𝑆))) |
5 | eqid 2725 | . . . 4 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
6 | eqid 2725 | . . . 4 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
7 | eqid 2725 | . . . 4 ⊢ (+g‘(1o mPoly 𝑅)) = (+g‘(1o mPoly 𝑅)) | |
8 | 5, 6, 7 | mplplusg 21951 | . . 3 ⊢ (+g‘(1o mPoly 𝑅)) = (+g‘(1o mPwSer 𝑅)) |
9 | eqid 2725 | . . . 4 ⊢ (1o mPoly 𝑆) = (1o mPoly 𝑆) | |
10 | eqid 2725 | . . . 4 ⊢ (1o mPwSer 𝑆) = (1o mPwSer 𝑆) | |
11 | eqid 2725 | . . . 4 ⊢ (+g‘(1o mPoly 𝑆)) = (+g‘(1o mPoly 𝑆)) | |
12 | 9, 10, 11 | mplplusg 21951 | . . 3 ⊢ (+g‘(1o mPoly 𝑆)) = (+g‘(1o mPwSer 𝑆)) |
13 | 4, 8, 12 | 3eqtr4g 2790 | . 2 ⊢ (𝜑 → (+g‘(1o mPoly 𝑅)) = (+g‘(1o mPoly 𝑆))) |
14 | eqid 2725 | . . 3 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
15 | eqid 2725 | . . 3 ⊢ (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘𝑅)) | |
16 | 14, 5, 15 | ply1plusg 22146 | . 2 ⊢ (+g‘(Poly1‘𝑅)) = (+g‘(1o mPoly 𝑅)) |
17 | eqid 2725 | . . 3 ⊢ (Poly1‘𝑆) = (Poly1‘𝑆) | |
18 | eqid 2725 | . . 3 ⊢ (+g‘(Poly1‘𝑆)) = (+g‘(Poly1‘𝑆)) | |
19 | 17, 9, 18 | ply1plusg 22146 | . 2 ⊢ (+g‘(Poly1‘𝑆)) = (+g‘(1o mPoly 𝑆)) |
20 | 13, 16, 19 | 3eqtr4g 2790 | 1 ⊢ (𝜑 → (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ‘cfv 6543 (class class class)co 7413 1oc1o 8473 Basecbs 17174 +gcplusg 17227 mPwSer cmps 21836 mPoly cmpl 21838 Poly1cpl1 22099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7866 df-1st 7987 df-2nd 7988 df-supp 8159 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9381 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-fz 13512 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-tset 17246 df-ple 17247 df-psr 21841 df-mpl 21843 df-opsr 21845 df-psr1 22102 df-ply1 22104 |
This theorem is referenced by: ply1divalg2 26087 |
Copyright terms: Public domain | W3C validator |