| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zsqrtelqelz | Structured version Visualization version GIF version | ||
| Description: If an integer has a rational square root, that root is must be an integer. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
| Ref | Expression |
|---|---|
| zsqrtelqelz | ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qdencl 16652 | . . . . 5 ⊢ ((√‘𝐴) ∈ ℚ → (denom‘(√‘𝐴)) ∈ ℕ) | |
| 2 | 1 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) ∈ ℕ) |
| 3 | 2 | nnred 12140 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) ∈ ℝ) |
| 4 | 1red 11113 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → 1 ∈ ℝ) | |
| 5 | 2 | nnnn0d 12442 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) ∈ ℕ0) |
| 6 | 5 | nn0ge0d 12445 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → 0 ≤ (denom‘(√‘𝐴))) |
| 7 | 0le1 11640 | . . . 4 ⊢ 0 ≤ 1 | |
| 8 | 7 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → 0 ≤ 1) |
| 9 | sq1 14102 | . . . . 5 ⊢ (1↑2) = 1 | |
| 10 | 9 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (1↑2) = 1) |
| 11 | zcn 12473 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
| 12 | 11 | sqsqrtd 15349 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → ((√‘𝐴)↑2) = 𝐴) |
| 13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → ((√‘𝐴)↑2) = 𝐴) |
| 14 | 13 | fveq2d 6826 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘((√‘𝐴)↑2)) = (denom‘𝐴)) |
| 15 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → 𝐴 ∈ ℤ) | |
| 16 | zq 12852 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
| 17 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → 𝐴 ∈ ℚ) |
| 18 | qden1elz 16668 | . . . . . . 7 ⊢ (𝐴 ∈ ℚ → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ)) | |
| 19 | 17, 18 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ)) |
| 20 | 15, 19 | mpbird 257 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘𝐴) = 1) |
| 21 | 14, 20 | eqtrd 2766 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘((√‘𝐴)↑2)) = 1) |
| 22 | densq 16667 | . . . . 5 ⊢ ((√‘𝐴) ∈ ℚ → (denom‘((√‘𝐴)↑2)) = ((denom‘(√‘𝐴))↑2)) | |
| 23 | 22 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘((√‘𝐴)↑2)) = ((denom‘(√‘𝐴))↑2)) |
| 24 | 10, 21, 23 | 3eqtr2rd 2773 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → ((denom‘(√‘𝐴))↑2) = (1↑2)) |
| 25 | 3, 4, 6, 8, 24 | sq11d 14165 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) = 1) |
| 26 | qden1elz 16668 | . . 3 ⊢ ((√‘𝐴) ∈ ℚ → ((denom‘(√‘𝐴)) = 1 ↔ (√‘𝐴) ∈ ℤ)) | |
| 27 | 26 | adantl 481 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → ((denom‘(√‘𝐴)) = 1 ↔ (√‘𝐴) ∈ ℤ)) |
| 28 | 25, 27 | mpbid 232 | 1 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 ≤ cle 11147 ℕcn 12125 2c2 12180 ℤcz 12468 ℚcq 12846 ↑cexp 13968 √csqrt 15140 denomcdenom 16645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 df-numer 16646 df-denom 16647 |
| This theorem is referenced by: nonsq 16670 dchrisum0flblem2 27447 posqsqznn 42439 |
| Copyright terms: Public domain | W3C validator |