Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zsqrtelqelz | Structured version Visualization version GIF version |
Description: If an integer has a rational square root, that root is must be an integer. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
Ref | Expression |
---|---|
zsqrtelqelz | ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qdencl 16373 | . . . . 5 ⊢ ((√‘𝐴) ∈ ℚ → (denom‘(√‘𝐴)) ∈ ℕ) | |
2 | 1 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) ∈ ℕ) |
3 | 2 | nnred 11918 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) ∈ ℝ) |
4 | 1red 10907 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → 1 ∈ ℝ) | |
5 | 2 | nnnn0d 12223 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) ∈ ℕ0) |
6 | 5 | nn0ge0d 12226 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → 0 ≤ (denom‘(√‘𝐴))) |
7 | 0le1 11428 | . . . 4 ⊢ 0 ≤ 1 | |
8 | 7 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → 0 ≤ 1) |
9 | sq1 13840 | . . . . 5 ⊢ (1↑2) = 1 | |
10 | 9 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (1↑2) = 1) |
11 | zcn 12254 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
12 | 11 | sqsqrtd 15079 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → ((√‘𝐴)↑2) = 𝐴) |
13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → ((√‘𝐴)↑2) = 𝐴) |
14 | 13 | fveq2d 6760 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘((√‘𝐴)↑2)) = (denom‘𝐴)) |
15 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → 𝐴 ∈ ℤ) | |
16 | zq 12623 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
17 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → 𝐴 ∈ ℚ) |
18 | qden1elz 16389 | . . . . . . 7 ⊢ (𝐴 ∈ ℚ → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ)) | |
19 | 17, 18 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ)) |
20 | 15, 19 | mpbird 256 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘𝐴) = 1) |
21 | 14, 20 | eqtrd 2778 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘((√‘𝐴)↑2)) = 1) |
22 | densq 16388 | . . . . 5 ⊢ ((√‘𝐴) ∈ ℚ → (denom‘((√‘𝐴)↑2)) = ((denom‘(√‘𝐴))↑2)) | |
23 | 22 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘((√‘𝐴)↑2)) = ((denom‘(√‘𝐴))↑2)) |
24 | 10, 21, 23 | 3eqtr2rd 2785 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → ((denom‘(√‘𝐴))↑2) = (1↑2)) |
25 | 3, 4, 6, 8, 24 | sq11d 13903 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) = 1) |
26 | qden1elz 16389 | . . 3 ⊢ ((√‘𝐴) ∈ ℚ → ((denom‘(√‘𝐴)) = 1 ↔ (√‘𝐴) ∈ ℤ)) | |
27 | 26 | adantl 481 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → ((denom‘(√‘𝐴)) = 1 ↔ (√‘𝐴) ∈ ℤ)) |
28 | 25, 27 | mpbid 231 | 1 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 ≤ cle 10941 ℕcn 11903 2c2 11958 ℤcz 12249 ℚcq 12617 ↑cexp 13710 √csqrt 14872 denomcdenom 16366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-gcd 16130 df-numer 16367 df-denom 16368 |
This theorem is referenced by: nonsq 16391 dchrisum0flblem2 26562 posqsqznn 40264 |
Copyright terms: Public domain | W3C validator |