Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zsqrtelqelz | Structured version Visualization version GIF version |
Description: If an integer has a rational square root, that root is must be an integer. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
Ref | Expression |
---|---|
zsqrtelqelz | ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qdencl 16297 | . . . . 5 ⊢ ((√‘𝐴) ∈ ℚ → (denom‘(√‘𝐴)) ∈ ℕ) | |
2 | 1 | adantl 485 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) ∈ ℕ) |
3 | 2 | nnred 11845 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) ∈ ℝ) |
4 | 1red 10834 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → 1 ∈ ℝ) | |
5 | 2 | nnnn0d 12150 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) ∈ ℕ0) |
6 | 5 | nn0ge0d 12153 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → 0 ≤ (denom‘(√‘𝐴))) |
7 | 0le1 11355 | . . . 4 ⊢ 0 ≤ 1 | |
8 | 7 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → 0 ≤ 1) |
9 | sq1 13764 | . . . . 5 ⊢ (1↑2) = 1 | |
10 | 9 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (1↑2) = 1) |
11 | zcn 12181 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
12 | 11 | sqsqrtd 15003 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → ((√‘𝐴)↑2) = 𝐴) |
13 | 12 | adantr 484 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → ((√‘𝐴)↑2) = 𝐴) |
14 | 13 | fveq2d 6721 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘((√‘𝐴)↑2)) = (denom‘𝐴)) |
15 | simpl 486 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → 𝐴 ∈ ℤ) | |
16 | zq 12550 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
17 | 16 | adantr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → 𝐴 ∈ ℚ) |
18 | qden1elz 16313 | . . . . . . 7 ⊢ (𝐴 ∈ ℚ → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ)) | |
19 | 17, 18 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ)) |
20 | 15, 19 | mpbird 260 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘𝐴) = 1) |
21 | 14, 20 | eqtrd 2777 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘((√‘𝐴)↑2)) = 1) |
22 | densq 16312 | . . . . 5 ⊢ ((√‘𝐴) ∈ ℚ → (denom‘((√‘𝐴)↑2)) = ((denom‘(√‘𝐴))↑2)) | |
23 | 22 | adantl 485 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘((√‘𝐴)↑2)) = ((denom‘(√‘𝐴))↑2)) |
24 | 10, 21, 23 | 3eqtr2rd 2784 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → ((denom‘(√‘𝐴))↑2) = (1↑2)) |
25 | 3, 4, 6, 8, 24 | sq11d 13827 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) = 1) |
26 | qden1elz 16313 | . . 3 ⊢ ((√‘𝐴) ∈ ℚ → ((denom‘(√‘𝐴)) = 1 ↔ (√‘𝐴) ∈ ℤ)) | |
27 | 26 | adantl 485 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → ((denom‘(√‘𝐴)) = 1 ↔ (√‘𝐴) ∈ ℤ)) |
28 | 25, 27 | mpbid 235 | 1 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 0cc0 10729 1c1 10730 ≤ cle 10868 ℕcn 11830 2c2 11885 ℤcz 12176 ℚcq 12544 ↑cexp 13635 √csqrt 14796 denomcdenom 16290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-inf 9059 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-q 12545 df-rp 12587 df-fl 13367 df-mod 13443 df-seq 13575 df-exp 13636 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-dvds 15816 df-gcd 16054 df-numer 16291 df-denom 16292 |
This theorem is referenced by: nonsq 16315 dchrisum0flblem2 26390 posqsqznn 40051 |
Copyright terms: Public domain | W3C validator |