| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zsqrtelqelz | Structured version Visualization version GIF version | ||
| Description: If an integer has a rational square root, that root is must be an integer. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
| Ref | Expression |
|---|---|
| zsqrtelqelz | ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qdencl 16652 | . . . . 5 ⊢ ((√‘𝐴) ∈ ℚ → (denom‘(√‘𝐴)) ∈ ℕ) | |
| 2 | 1 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) ∈ ℕ) |
| 3 | 2 | nnred 12143 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) ∈ ℝ) |
| 4 | 1red 11116 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → 1 ∈ ℝ) | |
| 5 | 2 | nnnn0d 12445 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) ∈ ℕ0) |
| 6 | 5 | nn0ge0d 12448 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → 0 ≤ (denom‘(√‘𝐴))) |
| 7 | 0le1 11643 | . . . 4 ⊢ 0 ≤ 1 | |
| 8 | 7 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → 0 ≤ 1) |
| 9 | sq1 14102 | . . . . 5 ⊢ (1↑2) = 1 | |
| 10 | 9 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (1↑2) = 1) |
| 11 | zcn 12476 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
| 12 | 11 | sqsqrtd 15349 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → ((√‘𝐴)↑2) = 𝐴) |
| 13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → ((√‘𝐴)↑2) = 𝐴) |
| 14 | 13 | fveq2d 6826 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘((√‘𝐴)↑2)) = (denom‘𝐴)) |
| 15 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → 𝐴 ∈ ℤ) | |
| 16 | zq 12855 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
| 17 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → 𝐴 ∈ ℚ) |
| 18 | qden1elz 16668 | . . . . . . 7 ⊢ (𝐴 ∈ ℚ → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ)) | |
| 19 | 17, 18 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ)) |
| 20 | 15, 19 | mpbird 257 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘𝐴) = 1) |
| 21 | 14, 20 | eqtrd 2764 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘((√‘𝐴)↑2)) = 1) |
| 22 | densq 16667 | . . . . 5 ⊢ ((√‘𝐴) ∈ ℚ → (denom‘((√‘𝐴)↑2)) = ((denom‘(√‘𝐴))↑2)) | |
| 23 | 22 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘((√‘𝐴)↑2)) = ((denom‘(√‘𝐴))↑2)) |
| 24 | 10, 21, 23 | 3eqtr2rd 2771 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → ((denom‘(√‘𝐴))↑2) = (1↑2)) |
| 25 | 3, 4, 6, 8, 24 | sq11d 14165 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) = 1) |
| 26 | qden1elz 16668 | . . 3 ⊢ ((√‘𝐴) ∈ ℚ → ((denom‘(√‘𝐴)) = 1 ↔ (√‘𝐴) ∈ ℤ)) | |
| 27 | 26 | adantl 481 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → ((denom‘(√‘𝐴)) = 1 ↔ (√‘𝐴) ∈ ℤ)) |
| 28 | 25, 27 | mpbid 232 | 1 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 ≤ cle 11150 ℕcn 12128 2c2 12183 ℤcz 12471 ℚcq 12849 ↑cexp 13968 √csqrt 15140 denomcdenom 16645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 df-numer 16646 df-denom 16647 |
| This theorem is referenced by: nonsq 16670 dchrisum0flblem2 27418 posqsqznn 42313 |
| Copyright terms: Public domain | W3C validator |