| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmgt1 | Structured version Visualization version GIF version | ||
| Description: A prime number is an integer greater than 1. (Contributed by Alexander van der Vekens, 17-May-2018.) |
| Ref | Expression |
|---|---|
| prmgt1 | ⊢ (𝑃 ∈ ℙ → 1 < 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmuz2 16715 | . 2 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) | |
| 2 | eluz2gt1 12944 | . 2 ⊢ (𝑃 ∈ (ℤ≥‘2) → 1 < 𝑃) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑃 ∈ ℙ → 1 < 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 class class class wbr 5123 ‘cfv 6541 1c1 11138 < clt 11277 2c2 12303 ℤ≥cuz 12860 ℙcprime 16690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-z 12597 df-uz 12861 df-rp 13017 df-seq 14025 df-exp 14085 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-dvds 16273 df-prm 16691 |
| This theorem is referenced by: isprm7 16727 coprm 16730 prmexpb 16738 vfermltl 16821 dvdsprmpweqle 16906 pcmpt 16912 rtprmirr 26739 bposlem6 27269 lgslem4 27280 gausslemma2dlem0i 27344 gausslemma2dlem7 27353 gausslemma2d 27354 rplogsumlem2 27465 padicabvf 27611 numclwwlk5 30335 numclwwlk7 30338 nn0prpwlem 36282 aks4d1p8d2 42045 aks4d1p8d3 42046 aks4d1p8 42047 aks6d1c2p2 42079 aks6d1c2lem4 42087 fmtnoprmfac1lem 47509 2pwp1prm 47534 sfprmdvdsmersenne 47548 lighneallem2 47551 |
| Copyright terms: Public domain | W3C validator |