![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrmulval | Structured version Visualization version GIF version |
Description: The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
psrmulr.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrmulr.b | ⊢ 𝐵 = (Base‘𝑆) |
psrmulr.m | ⊢ · = (.r‘𝑅) |
psrmulr.t | ⊢ ∙ = (.r‘𝑆) |
psrmulr.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
psrmulfval.i | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
psrmulfval.r | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
psrmulval.r | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
Ref | Expression |
---|---|
psrmulval | ⊢ (𝜑 → ((𝐹 ∙ 𝐺)‘𝑋) = (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑋 ∘f − 𝑘)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrmulr.s | . . . 4 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
2 | psrmulr.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
3 | psrmulr.m | . . . 4 ⊢ · = (.r‘𝑅) | |
4 | psrmulr.t | . . . 4 ⊢ ∙ = (.r‘𝑆) | |
5 | psrmulr.d | . . . 4 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
6 | psrmulfval.i | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
7 | psrmulfval.r | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
8 | 1, 2, 3, 4, 5, 6, 7 | psrmulfval 21435 | . . 3 ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝑥 ∈ 𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘))))))) |
9 | 8 | fveq1d 6880 | . 2 ⊢ (𝜑 → ((𝐹 ∙ 𝐺)‘𝑋) = ((𝑥 ∈ 𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘))))))‘𝑋)) |
10 | psrmulval.r | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
11 | breq2 5145 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑦 ∘r ≤ 𝑥 ↔ 𝑦 ∘r ≤ 𝑋)) | |
12 | 11 | rabbidv 3439 | . . . . . 6 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋}) |
13 | fvoveq1 7416 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝐺‘(𝑥 ∘f − 𝑘)) = (𝐺‘(𝑋 ∘f − 𝑘))) | |
14 | 13 | oveq2d 7409 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘))) = ((𝐹‘𝑘) · (𝐺‘(𝑋 ∘f − 𝑘)))) |
15 | 12, 14 | mpteq12dv 5232 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘)))) = (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑋 ∘f − 𝑘))))) |
16 | 15 | oveq2d 7409 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘))))) = (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑋 ∘f − 𝑘)))))) |
17 | eqid 2731 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘)))))) = (𝑥 ∈ 𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘)))))) | |
18 | ovex 7426 | . . . 4 ⊢ (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑋 ∘f − 𝑘))))) ∈ V | |
19 | 16, 17, 18 | fvmpt 6984 | . . 3 ⊢ (𝑋 ∈ 𝐷 → ((𝑥 ∈ 𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘))))))‘𝑋) = (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑋 ∘f − 𝑘)))))) |
20 | 10, 19 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘))))))‘𝑋) = (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑋 ∘f − 𝑘)))))) |
21 | 9, 20 | eqtrd 2771 | 1 ⊢ (𝜑 → ((𝐹 ∙ 𝐺)‘𝑋) = (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑋 ∘f − 𝑘)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {crab 3431 class class class wbr 5141 ↦ cmpt 5224 ◡ccnv 5668 “ cima 5672 ‘cfv 6532 (class class class)co 7393 ∘f cof 7651 ∘r cofr 7652 ↑m cmap 8803 Fincfn 8922 ≤ cle 11231 − cmin 11426 ℕcn 12194 ℕ0cn0 12454 Basecbs 17126 .rcmulr 17180 Σg cgsu 17368 mPwSer cmps 21388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-of 7653 df-om 7839 df-1st 7957 df-2nd 7958 df-supp 8129 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-er 8686 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9345 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-2 12257 df-3 12258 df-4 12259 df-5 12260 df-6 12261 df-7 12262 df-8 12263 df-9 12264 df-n0 12455 df-z 12541 df-uz 12805 df-fz 13467 df-struct 17062 df-slot 17097 df-ndx 17109 df-base 17127 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-tset 17198 df-psr 21393 |
This theorem is referenced by: psrlidm 21454 psrridm 21455 psrass1 21456 mplsubrglem 21492 |
Copyright terms: Public domain | W3C validator |