Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrmulval Structured version   Visualization version   GIF version

Theorem psrmulval 20627
 Description: The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
psrmulr.s 𝑆 = (𝐼 mPwSer 𝑅)
psrmulr.b 𝐵 = (Base‘𝑆)
psrmulr.m · = (.r𝑅)
psrmulr.t = (.r𝑆)
psrmulr.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psrmulfval.i (𝜑𝐹𝐵)
psrmulfval.r (𝜑𝐺𝐵)
psrmulval.r (𝜑𝑋𝐷)
Assertion
Ref Expression
psrmulval (𝜑 → ((𝐹 𝐺)‘𝑋) = (𝑅 Σg (𝑘 ∈ {𝑦𝐷𝑦r𝑋} ↦ ((𝐹𝑘) · (𝐺‘(𝑋f𝑘))))))
Distinct variable groups:   𝐵,𝑘   𝑦,𝑘,𝐷   ,𝑘,𝑦,𝐼   𝜑,𝑘   𝑘,𝐹   𝑘,𝐺   · ,𝑘   𝑅,𝑘   𝑘,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦,)   𝐵(𝑦,)   𝐷()   𝑅(𝑦,)   𝑆(𝑦,,𝑘)   (𝑦,,𝑘)   · (𝑦,)   𝐹(𝑦,)   𝐺(𝑦,)   𝑋()

Proof of Theorem psrmulval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 psrmulr.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 psrmulr.b . . . 4 𝐵 = (Base‘𝑆)
3 psrmulr.m . . . 4 · = (.r𝑅)
4 psrmulr.t . . . 4 = (.r𝑆)
5 psrmulr.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 psrmulfval.i . . . 4 (𝜑𝐹𝐵)
7 psrmulfval.r . . . 4 (𝜑𝐺𝐵)
81, 2, 3, 4, 5, 6, 7psrmulfval 20626 . . 3 (𝜑 → (𝐹 𝐺) = (𝑥𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑦𝐷𝑦r𝑥} ↦ ((𝐹𝑘) · (𝐺‘(𝑥f𝑘)))))))
98fveq1d 6651 . 2 (𝜑 → ((𝐹 𝐺)‘𝑋) = ((𝑥𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑦𝐷𝑦r𝑥} ↦ ((𝐹𝑘) · (𝐺‘(𝑥f𝑘))))))‘𝑋))
10 psrmulval.r . . 3 (𝜑𝑋𝐷)
11 breq2 5037 . . . . . . 7 (𝑥 = 𝑋 → (𝑦r𝑥𝑦r𝑋))
1211rabbidv 3430 . . . . . 6 (𝑥 = 𝑋 → {𝑦𝐷𝑦r𝑥} = {𝑦𝐷𝑦r𝑋})
13 fvoveq1 7162 . . . . . . 7 (𝑥 = 𝑋 → (𝐺‘(𝑥f𝑘)) = (𝐺‘(𝑋f𝑘)))
1413oveq2d 7155 . . . . . 6 (𝑥 = 𝑋 → ((𝐹𝑘) · (𝐺‘(𝑥f𝑘))) = ((𝐹𝑘) · (𝐺‘(𝑋f𝑘))))
1512, 14mpteq12dv 5118 . . . . 5 (𝑥 = 𝑋 → (𝑘 ∈ {𝑦𝐷𝑦r𝑥} ↦ ((𝐹𝑘) · (𝐺‘(𝑥f𝑘)))) = (𝑘 ∈ {𝑦𝐷𝑦r𝑋} ↦ ((𝐹𝑘) · (𝐺‘(𝑋f𝑘)))))
1615oveq2d 7155 . . . 4 (𝑥 = 𝑋 → (𝑅 Σg (𝑘 ∈ {𝑦𝐷𝑦r𝑥} ↦ ((𝐹𝑘) · (𝐺‘(𝑥f𝑘))))) = (𝑅 Σg (𝑘 ∈ {𝑦𝐷𝑦r𝑋} ↦ ((𝐹𝑘) · (𝐺‘(𝑋f𝑘))))))
17 eqid 2801 . . . 4 (𝑥𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑦𝐷𝑦r𝑥} ↦ ((𝐹𝑘) · (𝐺‘(𝑥f𝑘)))))) = (𝑥𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑦𝐷𝑦r𝑥} ↦ ((𝐹𝑘) · (𝐺‘(𝑥f𝑘))))))
18 ovex 7172 . . . 4 (𝑅 Σg (𝑘 ∈ {𝑦𝐷𝑦r𝑋} ↦ ((𝐹𝑘) · (𝐺‘(𝑋f𝑘))))) ∈ V
1916, 17, 18fvmpt 6749 . . 3 (𝑋𝐷 → ((𝑥𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑦𝐷𝑦r𝑥} ↦ ((𝐹𝑘) · (𝐺‘(𝑥f𝑘))))))‘𝑋) = (𝑅 Σg (𝑘 ∈ {𝑦𝐷𝑦r𝑋} ↦ ((𝐹𝑘) · (𝐺‘(𝑋f𝑘))))))
2010, 19syl 17 . 2 (𝜑 → ((𝑥𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑦𝐷𝑦r𝑥} ↦ ((𝐹𝑘) · (𝐺‘(𝑥f𝑘))))))‘𝑋) = (𝑅 Σg (𝑘 ∈ {𝑦𝐷𝑦r𝑋} ↦ ((𝐹𝑘) · (𝐺‘(𝑋f𝑘))))))
219, 20eqtrd 2836 1 (𝜑 → ((𝐹 𝐺)‘𝑋) = (𝑅 Σg (𝑘 ∈ {𝑦𝐷𝑦r𝑋} ↦ ((𝐹𝑘) · (𝐺‘(𝑋f𝑘))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2112  {crab 3113   class class class wbr 5033   ↦ cmpt 5113  ◡ccnv 5522   “ cima 5526  ‘cfv 6328  (class class class)co 7139   ∘f cof 7391   ∘r cofr 7392   ↑m cmap 8393  Fincfn 8496   ≤ cle 10669   − cmin 10863  ℕcn 11629  ℕ0cn0 11889  Basecbs 16478  .rcmulr 16561   Σg cgsu 16709   mPwSer cmps 20592 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-tset 16579  df-psr 20597 This theorem is referenced by:  psrlidm  20644  psrridm  20645  psrass1  20646  mplsubrglem  20680
 Copyright terms: Public domain W3C validator