Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psrmulval | Structured version Visualization version GIF version |
Description: The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
psrmulr.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrmulr.b | ⊢ 𝐵 = (Base‘𝑆) |
psrmulr.m | ⊢ · = (.r‘𝑅) |
psrmulr.t | ⊢ ∙ = (.r‘𝑆) |
psrmulr.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
psrmulfval.i | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
psrmulfval.r | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
psrmulval.r | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
Ref | Expression |
---|---|
psrmulval | ⊢ (𝜑 → ((𝐹 ∙ 𝐺)‘𝑋) = (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑋 ∘f − 𝑘)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrmulr.s | . . . 4 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
2 | psrmulr.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
3 | psrmulr.m | . . . 4 ⊢ · = (.r‘𝑅) | |
4 | psrmulr.t | . . . 4 ⊢ ∙ = (.r‘𝑆) | |
5 | psrmulr.d | . . . 4 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
6 | psrmulfval.i | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
7 | psrmulfval.r | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
8 | 1, 2, 3, 4, 5, 6, 7 | psrmulfval 21064 | . . 3 ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝑥 ∈ 𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘))))))) |
9 | 8 | fveq1d 6758 | . 2 ⊢ (𝜑 → ((𝐹 ∙ 𝐺)‘𝑋) = ((𝑥 ∈ 𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘))))))‘𝑋)) |
10 | psrmulval.r | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
11 | breq2 5074 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑦 ∘r ≤ 𝑥 ↔ 𝑦 ∘r ≤ 𝑋)) | |
12 | 11 | rabbidv 3404 | . . . . . 6 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋}) |
13 | fvoveq1 7278 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝐺‘(𝑥 ∘f − 𝑘)) = (𝐺‘(𝑋 ∘f − 𝑘))) | |
14 | 13 | oveq2d 7271 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘))) = ((𝐹‘𝑘) · (𝐺‘(𝑋 ∘f − 𝑘)))) |
15 | 12, 14 | mpteq12dv 5161 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘)))) = (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑋 ∘f − 𝑘))))) |
16 | 15 | oveq2d 7271 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘))))) = (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑋 ∘f − 𝑘)))))) |
17 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘)))))) = (𝑥 ∈ 𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘)))))) | |
18 | ovex 7288 | . . . 4 ⊢ (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑋 ∘f − 𝑘))))) ∈ V | |
19 | 16, 17, 18 | fvmpt 6857 | . . 3 ⊢ (𝑋 ∈ 𝐷 → ((𝑥 ∈ 𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘))))))‘𝑋) = (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑋 ∘f − 𝑘)))))) |
20 | 10, 19 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘))))))‘𝑋) = (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑋 ∘f − 𝑘)))))) |
21 | 9, 20 | eqtrd 2778 | 1 ⊢ (𝜑 → ((𝐹 ∙ 𝐺)‘𝑋) = (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑋 ∘f − 𝑘)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {crab 3067 class class class wbr 5070 ↦ cmpt 5153 ◡ccnv 5579 “ cima 5583 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 ∘r cofr 7510 ↑m cmap 8573 Fincfn 8691 ≤ cle 10941 − cmin 11135 ℕcn 11903 ℕ0cn0 12163 Basecbs 16840 .rcmulr 16889 Σg cgsu 17068 mPwSer cmps 21017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-tset 16907 df-psr 21022 |
This theorem is referenced by: psrlidm 21082 psrridm 21083 psrass1 21084 mplsubrglem 21120 |
Copyright terms: Public domain | W3C validator |