Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psrmulval | Structured version Visualization version GIF version |
Description: The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
psrmulr.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrmulr.b | ⊢ 𝐵 = (Base‘𝑆) |
psrmulr.m | ⊢ · = (.r‘𝑅) |
psrmulr.t | ⊢ ∙ = (.r‘𝑆) |
psrmulr.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
psrmulfval.i | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
psrmulfval.r | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
psrmulval.r | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
Ref | Expression |
---|---|
psrmulval | ⊢ (𝜑 → ((𝐹 ∙ 𝐺)‘𝑋) = (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑋 ∘f − 𝑘)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrmulr.s | . . . 4 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
2 | psrmulr.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
3 | psrmulr.m | . . . 4 ⊢ · = (.r‘𝑅) | |
4 | psrmulr.t | . . . 4 ⊢ ∙ = (.r‘𝑆) | |
5 | psrmulr.d | . . . 4 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
6 | psrmulfval.i | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
7 | psrmulfval.r | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
8 | 1, 2, 3, 4, 5, 6, 7 | psrmulfval 21154 | . . 3 ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝑥 ∈ 𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘))))))) |
9 | 8 | fveq1d 6776 | . 2 ⊢ (𝜑 → ((𝐹 ∙ 𝐺)‘𝑋) = ((𝑥 ∈ 𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘))))))‘𝑋)) |
10 | psrmulval.r | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
11 | breq2 5078 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑦 ∘r ≤ 𝑥 ↔ 𝑦 ∘r ≤ 𝑋)) | |
12 | 11 | rabbidv 3414 | . . . . . 6 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋}) |
13 | fvoveq1 7298 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝐺‘(𝑥 ∘f − 𝑘)) = (𝐺‘(𝑋 ∘f − 𝑘))) | |
14 | 13 | oveq2d 7291 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘))) = ((𝐹‘𝑘) · (𝐺‘(𝑋 ∘f − 𝑘)))) |
15 | 12, 14 | mpteq12dv 5165 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘)))) = (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑋 ∘f − 𝑘))))) |
16 | 15 | oveq2d 7291 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘))))) = (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑋 ∘f − 𝑘)))))) |
17 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘)))))) = (𝑥 ∈ 𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘)))))) | |
18 | ovex 7308 | . . . 4 ⊢ (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑋 ∘f − 𝑘))))) ∈ V | |
19 | 16, 17, 18 | fvmpt 6875 | . . 3 ⊢ (𝑋 ∈ 𝐷 → ((𝑥 ∈ 𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘))))))‘𝑋) = (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑋 ∘f − 𝑘)))))) |
20 | 10, 19 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑥 ∘f − 𝑘))))))‘𝑋) = (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑋 ∘f − 𝑘)))))) |
21 | 9, 20 | eqtrd 2778 | 1 ⊢ (𝜑 → ((𝐹 ∙ 𝐺)‘𝑋) = (𝑅 Σg (𝑘 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋} ↦ ((𝐹‘𝑘) · (𝐺‘(𝑋 ∘f − 𝑘)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {crab 3068 class class class wbr 5074 ↦ cmpt 5157 ◡ccnv 5588 “ cima 5592 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 ∘r cofr 7532 ↑m cmap 8615 Fincfn 8733 ≤ cle 11010 − cmin 11205 ℕcn 11973 ℕ0cn0 12233 Basecbs 16912 .rcmulr 16963 Σg cgsu 17151 mPwSer cmps 21107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-tset 16981 df-psr 21112 |
This theorem is referenced by: psrlidm 21172 psrridm 21173 psrass1 21174 mplsubrglem 21210 |
Copyright terms: Public domain | W3C validator |