| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwssplit0 | Structured version Visualization version GIF version | ||
| Description: Splitting for structure powers, part 0: restriction is a function. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| pwssplit1.y | ⊢ 𝑌 = (𝑊 ↑s 𝑈) |
| pwssplit1.z | ⊢ 𝑍 = (𝑊 ↑s 𝑉) |
| pwssplit1.b | ⊢ 𝐵 = (Base‘𝑌) |
| pwssplit1.c | ⊢ 𝐶 = (Base‘𝑍) |
| pwssplit1.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) |
| Ref | Expression |
|---|---|
| pwssplit0 | ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹:𝐵⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwssplit1.y | . . . . . . 7 ⊢ 𝑌 = (𝑊 ↑s 𝑈) | |
| 2 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 3 | pwssplit1.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑌) | |
| 4 | 1, 2, 3 | pwselbasb 17457 | . . . . . 6 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋) → (𝑥 ∈ 𝐵 ↔ 𝑥:𝑈⟶(Base‘𝑊))) |
| 5 | 4 | 3adant3 1132 | . . . . 5 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → (𝑥 ∈ 𝐵 ↔ 𝑥:𝑈⟶(Base‘𝑊))) |
| 6 | 5 | biimpa 476 | . . . 4 ⊢ (((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → 𝑥:𝑈⟶(Base‘𝑊)) |
| 7 | simpl3 1194 | . . . 4 ⊢ (((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → 𝑉 ⊆ 𝑈) | |
| 8 | 6, 7 | fssresd 6729 | . . 3 ⊢ (((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → (𝑥 ↾ 𝑉):𝑉⟶(Base‘𝑊)) |
| 9 | simp1 1136 | . . . . 5 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑊 ∈ 𝑇) | |
| 10 | simp2 1137 | . . . . . 6 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑈 ∈ 𝑋) | |
| 11 | simp3 1138 | . . . . . 6 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑉 ⊆ 𝑈) | |
| 12 | 10, 11 | ssexd 5281 | . . . . 5 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑉 ∈ V) |
| 13 | pwssplit1.z | . . . . . 6 ⊢ 𝑍 = (𝑊 ↑s 𝑉) | |
| 14 | pwssplit1.c | . . . . . 6 ⊢ 𝐶 = (Base‘𝑍) | |
| 15 | 13, 2, 14 | pwselbasb 17457 | . . . . 5 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑉 ∈ V) → ((𝑥 ↾ 𝑉) ∈ 𝐶 ↔ (𝑥 ↾ 𝑉):𝑉⟶(Base‘𝑊))) |
| 16 | 9, 12, 15 | syl2anc 584 | . . . 4 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → ((𝑥 ↾ 𝑉) ∈ 𝐶 ↔ (𝑥 ↾ 𝑉):𝑉⟶(Base‘𝑊))) |
| 17 | 16 | adantr 480 | . . 3 ⊢ (((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → ((𝑥 ↾ 𝑉) ∈ 𝐶 ↔ (𝑥 ↾ 𝑉):𝑉⟶(Base‘𝑊))) |
| 18 | 8, 17 | mpbird 257 | . 2 ⊢ (((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → (𝑥 ↾ 𝑉) ∈ 𝐶) |
| 19 | pwssplit1.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) | |
| 20 | 18, 19 | fmptd 7088 | 1 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹:𝐵⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3916 ↦ cmpt 5190 ↾ cres 5642 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 ↑s cpws 17415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-hom 17250 df-cco 17251 df-prds 17416 df-pws 17418 |
| This theorem is referenced by: pwssplit1 20972 pwssplit2 20973 pwssplit3 20974 |
| Copyright terms: Public domain | W3C validator |