![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwssplit0 | Structured version Visualization version GIF version |
Description: Splitting for structure powers, part 0: restriction is a function. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
pwssplit1.y | ⊢ 𝑌 = (𝑊 ↑s 𝑈) |
pwssplit1.z | ⊢ 𝑍 = (𝑊 ↑s 𝑉) |
pwssplit1.b | ⊢ 𝐵 = (Base‘𝑌) |
pwssplit1.c | ⊢ 𝐶 = (Base‘𝑍) |
pwssplit1.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) |
Ref | Expression |
---|---|
pwssplit0 | ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹:𝐵⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwssplit1.y | . . . . . . 7 ⊢ 𝑌 = (𝑊 ↑s 𝑈) | |
2 | eqid 2726 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
3 | pwssplit1.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑌) | |
4 | 1, 2, 3 | pwselbasb 17443 | . . . . . 6 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋) → (𝑥 ∈ 𝐵 ↔ 𝑥:𝑈⟶(Base‘𝑊))) |
5 | 4 | 3adant3 1129 | . . . . 5 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → (𝑥 ∈ 𝐵 ↔ 𝑥:𝑈⟶(Base‘𝑊))) |
6 | 5 | biimpa 476 | . . . 4 ⊢ (((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → 𝑥:𝑈⟶(Base‘𝑊)) |
7 | simpl3 1190 | . . . 4 ⊢ (((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → 𝑉 ⊆ 𝑈) | |
8 | 6, 7 | fssresd 6752 | . . 3 ⊢ (((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → (𝑥 ↾ 𝑉):𝑉⟶(Base‘𝑊)) |
9 | simp1 1133 | . . . . 5 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑊 ∈ 𝑇) | |
10 | simp2 1134 | . . . . . 6 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑈 ∈ 𝑋) | |
11 | simp3 1135 | . . . . . 6 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑉 ⊆ 𝑈) | |
12 | 10, 11 | ssexd 5317 | . . . . 5 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑉 ∈ V) |
13 | pwssplit1.z | . . . . . 6 ⊢ 𝑍 = (𝑊 ↑s 𝑉) | |
14 | pwssplit1.c | . . . . . 6 ⊢ 𝐶 = (Base‘𝑍) | |
15 | 13, 2, 14 | pwselbasb 17443 | . . . . 5 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑉 ∈ V) → ((𝑥 ↾ 𝑉) ∈ 𝐶 ↔ (𝑥 ↾ 𝑉):𝑉⟶(Base‘𝑊))) |
16 | 9, 12, 15 | syl2anc 583 | . . . 4 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → ((𝑥 ↾ 𝑉) ∈ 𝐶 ↔ (𝑥 ↾ 𝑉):𝑉⟶(Base‘𝑊))) |
17 | 16 | adantr 480 | . . 3 ⊢ (((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → ((𝑥 ↾ 𝑉) ∈ 𝐶 ↔ (𝑥 ↾ 𝑉):𝑉⟶(Base‘𝑊))) |
18 | 8, 17 | mpbird 257 | . 2 ⊢ (((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → (𝑥 ↾ 𝑉) ∈ 𝐶) |
19 | pwssplit1.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) | |
20 | 18, 19 | fmptd 7109 | 1 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹:𝐵⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ⊆ wss 3943 ↦ cmpt 5224 ↾ cres 5671 ⟶wf 6533 ‘cfv 6537 (class class class)co 7405 Basecbs 17153 ↑s cpws 17401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13491 df-struct 17089 df-slot 17124 df-ndx 17136 df-base 17154 df-plusg 17219 df-mulr 17220 df-sca 17222 df-vsca 17223 df-ip 17224 df-tset 17225 df-ple 17226 df-ds 17228 df-hom 17230 df-cco 17231 df-prds 17402 df-pws 17404 |
This theorem is referenced by: pwssplit1 20907 pwssplit2 20908 pwssplit3 20909 |
Copyright terms: Public domain | W3C validator |