MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssplit0 Structured version   Visualization version   GIF version

Theorem pwssplit0 20993
Description: Splitting for structure powers, part 0: restriction is a function. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
pwssplit1.y 𝑌 = (𝑊s 𝑈)
pwssplit1.z 𝑍 = (𝑊s 𝑉)
pwssplit1.b 𝐵 = (Base‘𝑌)
pwssplit1.c 𝐶 = (Base‘𝑍)
pwssplit1.f 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
Assertion
Ref Expression
pwssplit0 ((𝑊𝑇𝑈𝑋𝑉𝑈) → 𝐹:𝐵𝐶)
Distinct variable groups:   𝑥,𝑌   𝑥,𝑊   𝑥,𝑈   𝑥,𝑍   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑋   𝑥,𝑇
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwssplit0
StepHypRef Expression
1 pwssplit1.y . . . . . . 7 𝑌 = (𝑊s 𝑈)
2 eqid 2731 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
3 pwssplit1.b . . . . . . 7 𝐵 = (Base‘𝑌)
41, 2, 3pwselbasb 17392 . . . . . 6 ((𝑊𝑇𝑈𝑋) → (𝑥𝐵𝑥:𝑈⟶(Base‘𝑊)))
543adant3 1132 . . . . 5 ((𝑊𝑇𝑈𝑋𝑉𝑈) → (𝑥𝐵𝑥:𝑈⟶(Base‘𝑊)))
65biimpa 476 . . . 4 (((𝑊𝑇𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → 𝑥:𝑈⟶(Base‘𝑊))
7 simpl3 1194 . . . 4 (((𝑊𝑇𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → 𝑉𝑈)
86, 7fssresd 6690 . . 3 (((𝑊𝑇𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (𝑥𝑉):𝑉⟶(Base‘𝑊))
9 simp1 1136 . . . . 5 ((𝑊𝑇𝑈𝑋𝑉𝑈) → 𝑊𝑇)
10 simp2 1137 . . . . . 6 ((𝑊𝑇𝑈𝑋𝑉𝑈) → 𝑈𝑋)
11 simp3 1138 . . . . . 6 ((𝑊𝑇𝑈𝑋𝑉𝑈) → 𝑉𝑈)
1210, 11ssexd 5262 . . . . 5 ((𝑊𝑇𝑈𝑋𝑉𝑈) → 𝑉 ∈ V)
13 pwssplit1.z . . . . . 6 𝑍 = (𝑊s 𝑉)
14 pwssplit1.c . . . . . 6 𝐶 = (Base‘𝑍)
1513, 2, 14pwselbasb 17392 . . . . 5 ((𝑊𝑇𝑉 ∈ V) → ((𝑥𝑉) ∈ 𝐶 ↔ (𝑥𝑉):𝑉⟶(Base‘𝑊)))
169, 12, 15syl2anc 584 . . . 4 ((𝑊𝑇𝑈𝑋𝑉𝑈) → ((𝑥𝑉) ∈ 𝐶 ↔ (𝑥𝑉):𝑉⟶(Base‘𝑊)))
1716adantr 480 . . 3 (((𝑊𝑇𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → ((𝑥𝑉) ∈ 𝐶 ↔ (𝑥𝑉):𝑉⟶(Base‘𝑊)))
188, 17mpbird 257 . 2 (((𝑊𝑇𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (𝑥𝑉) ∈ 𝐶)
19 pwssplit1.f . 2 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
2018, 19fmptd 7047 1 ((𝑊𝑇𝑈𝑋𝑉𝑈) → 𝐹:𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  wss 3902  cmpt 5172  cres 5618  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17120  s cpws 17350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-prds 17351  df-pws 17353
This theorem is referenced by:  pwssplit1  20994  pwssplit2  20995  pwssplit3  20996
  Copyright terms: Public domain W3C validator