| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwssplit0 | Structured version Visualization version GIF version | ||
| Description: Splitting for structure powers, part 0: restriction is a function. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| pwssplit1.y | ⊢ 𝑌 = (𝑊 ↑s 𝑈) |
| pwssplit1.z | ⊢ 𝑍 = (𝑊 ↑s 𝑉) |
| pwssplit1.b | ⊢ 𝐵 = (Base‘𝑌) |
| pwssplit1.c | ⊢ 𝐶 = (Base‘𝑍) |
| pwssplit1.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) |
| Ref | Expression |
|---|---|
| pwssplit0 | ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹:𝐵⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwssplit1.y | . . . . . . 7 ⊢ 𝑌 = (𝑊 ↑s 𝑈) | |
| 2 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 3 | pwssplit1.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑌) | |
| 4 | 1, 2, 3 | pwselbasb 17427 | . . . . . 6 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋) → (𝑥 ∈ 𝐵 ↔ 𝑥:𝑈⟶(Base‘𝑊))) |
| 5 | 4 | 3adant3 1132 | . . . . 5 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → (𝑥 ∈ 𝐵 ↔ 𝑥:𝑈⟶(Base‘𝑊))) |
| 6 | 5 | biimpa 476 | . . . 4 ⊢ (((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → 𝑥:𝑈⟶(Base‘𝑊)) |
| 7 | simpl3 1194 | . . . 4 ⊢ (((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → 𝑉 ⊆ 𝑈) | |
| 8 | 6, 7 | fssresd 6709 | . . 3 ⊢ (((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → (𝑥 ↾ 𝑉):𝑉⟶(Base‘𝑊)) |
| 9 | simp1 1136 | . . . . 5 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑊 ∈ 𝑇) | |
| 10 | simp2 1137 | . . . . . 6 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑈 ∈ 𝑋) | |
| 11 | simp3 1138 | . . . . . 6 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑉 ⊆ 𝑈) | |
| 12 | 10, 11 | ssexd 5274 | . . . . 5 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑉 ∈ V) |
| 13 | pwssplit1.z | . . . . . 6 ⊢ 𝑍 = (𝑊 ↑s 𝑉) | |
| 14 | pwssplit1.c | . . . . . 6 ⊢ 𝐶 = (Base‘𝑍) | |
| 15 | 13, 2, 14 | pwselbasb 17427 | . . . . 5 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑉 ∈ V) → ((𝑥 ↾ 𝑉) ∈ 𝐶 ↔ (𝑥 ↾ 𝑉):𝑉⟶(Base‘𝑊))) |
| 16 | 9, 12, 15 | syl2anc 584 | . . . 4 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → ((𝑥 ↾ 𝑉) ∈ 𝐶 ↔ (𝑥 ↾ 𝑉):𝑉⟶(Base‘𝑊))) |
| 17 | 16 | adantr 480 | . . 3 ⊢ (((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → ((𝑥 ↾ 𝑉) ∈ 𝐶 ↔ (𝑥 ↾ 𝑉):𝑉⟶(Base‘𝑊))) |
| 18 | 8, 17 | mpbird 257 | . 2 ⊢ (((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ 𝐵) → (𝑥 ↾ 𝑉) ∈ 𝐶) |
| 19 | pwssplit1.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) | |
| 20 | 18, 19 | fmptd 7068 | 1 ⊢ ((𝑊 ∈ 𝑇 ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹:𝐵⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 ↦ cmpt 5183 ↾ cres 5633 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 ↑s cpws 17385 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-prds 17386 df-pws 17388 |
| This theorem is referenced by: pwssplit1 20942 pwssplit2 20943 pwssplit3 20944 |
| Copyright terms: Public domain | W3C validator |