MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssplit0 Structured version   Visualization version   GIF version

Theorem pwssplit0 20971
Description: Splitting for structure powers, part 0: restriction is a function. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
pwssplit1.y 𝑌 = (𝑊s 𝑈)
pwssplit1.z 𝑍 = (𝑊s 𝑉)
pwssplit1.b 𝐵 = (Base‘𝑌)
pwssplit1.c 𝐶 = (Base‘𝑍)
pwssplit1.f 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
Assertion
Ref Expression
pwssplit0 ((𝑊𝑇𝑈𝑋𝑉𝑈) → 𝐹:𝐵𝐶)
Distinct variable groups:   𝑥,𝑌   𝑥,𝑊   𝑥,𝑈   𝑥,𝑍   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑋   𝑥,𝑇
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwssplit0
StepHypRef Expression
1 pwssplit1.y . . . . . . 7 𝑌 = (𝑊s 𝑈)
2 eqid 2730 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
3 pwssplit1.b . . . . . . 7 𝐵 = (Base‘𝑌)
41, 2, 3pwselbasb 17457 . . . . . 6 ((𝑊𝑇𝑈𝑋) → (𝑥𝐵𝑥:𝑈⟶(Base‘𝑊)))
543adant3 1132 . . . . 5 ((𝑊𝑇𝑈𝑋𝑉𝑈) → (𝑥𝐵𝑥:𝑈⟶(Base‘𝑊)))
65biimpa 476 . . . 4 (((𝑊𝑇𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → 𝑥:𝑈⟶(Base‘𝑊))
7 simpl3 1194 . . . 4 (((𝑊𝑇𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → 𝑉𝑈)
86, 7fssresd 6729 . . 3 (((𝑊𝑇𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (𝑥𝑉):𝑉⟶(Base‘𝑊))
9 simp1 1136 . . . . 5 ((𝑊𝑇𝑈𝑋𝑉𝑈) → 𝑊𝑇)
10 simp2 1137 . . . . . 6 ((𝑊𝑇𝑈𝑋𝑉𝑈) → 𝑈𝑋)
11 simp3 1138 . . . . . 6 ((𝑊𝑇𝑈𝑋𝑉𝑈) → 𝑉𝑈)
1210, 11ssexd 5281 . . . . 5 ((𝑊𝑇𝑈𝑋𝑉𝑈) → 𝑉 ∈ V)
13 pwssplit1.z . . . . . 6 𝑍 = (𝑊s 𝑉)
14 pwssplit1.c . . . . . 6 𝐶 = (Base‘𝑍)
1513, 2, 14pwselbasb 17457 . . . . 5 ((𝑊𝑇𝑉 ∈ V) → ((𝑥𝑉) ∈ 𝐶 ↔ (𝑥𝑉):𝑉⟶(Base‘𝑊)))
169, 12, 15syl2anc 584 . . . 4 ((𝑊𝑇𝑈𝑋𝑉𝑈) → ((𝑥𝑉) ∈ 𝐶 ↔ (𝑥𝑉):𝑉⟶(Base‘𝑊)))
1716adantr 480 . . 3 (((𝑊𝑇𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → ((𝑥𝑉) ∈ 𝐶 ↔ (𝑥𝑉):𝑉⟶(Base‘𝑊)))
188, 17mpbird 257 . 2 (((𝑊𝑇𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (𝑥𝑉) ∈ 𝐶)
19 pwssplit1.f . 2 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
2018, 19fmptd 7088 1 ((𝑊𝑇𝑈𝑋𝑉𝑈) → 𝐹:𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  wss 3916  cmpt 5190  cres 5642  wf 6509  cfv 6513  (class class class)co 7389  Basecbs 17185  s cpws 17415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-hom 17250  df-cco 17251  df-prds 17416  df-pws 17418
This theorem is referenced by:  pwssplit1  20972  pwssplit2  20973  pwssplit3  20974
  Copyright terms: Public domain W3C validator