MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwsidrepsw Structured version   Visualization version   GIF version

Theorem cshwsidrepsw 17040
Description: If cyclically shifting a word of length being a prime number by a number of positions which is not divisible by the prime number results in the word itself, the word is a "repeated symbol word". (Contributed by AV, 18-May-2018.) (Revised by AV, 10-Nov-2018.)
Assertion
Ref Expression
cshwsidrepsw ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))

Proof of Theorem cshwsidrepsw
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (♯‘𝑊) ∈ ℙ)
21adantr 480 . . . . . . . 8 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (♯‘𝑊) ∈ ℙ)
3 simp1 1136 . . . . . . . . 9 ((𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊) → 𝐿 ∈ ℤ)
43adantl 481 . . . . . . . 8 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → 𝐿 ∈ ℤ)
5 simpr2 1196 . . . . . . . 8 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝐿 mod (♯‘𝑊)) ≠ 0)
62, 4, 53jca 1128 . . . . . . 7 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → ((♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0))
76adantr 480 . . . . . 6 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0))
8 simpr 484 . . . . . 6 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊)))
9 modprmn0modprm0 16754 . . . . . 6 (((♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0) → (𝑖 ∈ (0..^(♯‘𝑊)) → ∃𝑗 ∈ (0..^(♯‘𝑊))((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0))
107, 8, 9sylc 65 . . . . 5 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ∃𝑗 ∈ (0..^(♯‘𝑊))((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0)
11 oveq1 7376 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑘 · 𝐿) = (𝑗 · 𝐿))
1211oveq2d 7385 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑖 + (𝑘 · 𝐿)) = (𝑖 + (𝑗 · 𝐿)))
1312fvoveq1d 7391 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑊‘((𝑖 + (𝑘 · 𝐿)) mod (♯‘𝑊))) = (𝑊‘((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊))))
1413eqeq2d 2740 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝑊𝑖) = (𝑊‘((𝑖 + (𝑘 · 𝐿)) mod (♯‘𝑊))) ↔ (𝑊𝑖) = (𝑊‘((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)))))
15 simpl 482 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → 𝑊 ∈ Word 𝑉)
1615, 3anim12i 613 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝑊 ∈ Word 𝑉𝐿 ∈ ℤ))
1716adantr 480 . . . . . . . . . . 11 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊 ∈ Word 𝑉𝐿 ∈ ℤ))
1817adantl 481 . . . . . . . . . 10 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → (𝑊 ∈ Word 𝑉𝐿 ∈ ℤ))
19 simpr3 1197 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝑊 cyclShift 𝐿) = 𝑊)
2019anim1i 615 . . . . . . . . . . 11 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝐿) = 𝑊𝑖 ∈ (0..^(♯‘𝑊))))
2120adantl 481 . . . . . . . . . 10 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → ((𝑊 cyclShift 𝐿) = 𝑊𝑖 ∈ (0..^(♯‘𝑊))))
22 cshweqrep 14762 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) → (((𝑊 cyclShift 𝐿) = 𝑊𝑖 ∈ (0..^(♯‘𝑊))) → ∀𝑘 ∈ ℕ0 (𝑊𝑖) = (𝑊‘((𝑖 + (𝑘 · 𝐿)) mod (♯‘𝑊)))))
2318, 21, 22sylc 65 . . . . . . . . 9 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → ∀𝑘 ∈ ℕ0 (𝑊𝑖) = (𝑊‘((𝑖 + (𝑘 · 𝐿)) mod (♯‘𝑊))))
24 elfzonn0 13644 . . . . . . . . . 10 (𝑗 ∈ (0..^(♯‘𝑊)) → 𝑗 ∈ ℕ0)
2524ad2antrr 726 . . . . . . . . 9 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → 𝑗 ∈ ℕ0)
2614, 23, 25rspcdva 3586 . . . . . . . 8 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → (𝑊𝑖) = (𝑊‘((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊))))
27 fveq2 6840 . . . . . . . . . 10 (((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0 → (𝑊‘((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊))) = (𝑊‘0))
2827adantl 481 . . . . . . . . 9 ((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) → (𝑊‘((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊))) = (𝑊‘0))
2928adantr 480 . . . . . . . 8 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → (𝑊‘((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊))) = (𝑊‘0))
3026, 29eqtrd 2764 . . . . . . 7 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → (𝑊𝑖) = (𝑊‘0))
3130ex 412 . . . . . 6 ((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) → ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊𝑖) = (𝑊‘0)))
3231rexlimiva 3126 . . . . 5 (∃𝑗 ∈ (0..^(♯‘𝑊))((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0 → ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊𝑖) = (𝑊‘0)))
3310, 32mpcom 38 . . . 4 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊𝑖) = (𝑊‘0))
3433ralrimiva 3125 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
35 repswsymballbi 14721 . . . 4 (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
3635ad2antrr 726 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
3734, 36mpbird 257 . 2 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))
3837ex 412 1 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cfv 6499  (class class class)co 7369  0cc0 11044   + caddc 11047   · cmul 11049  0cn0 12418  cz 12505  ..^cfzo 13591   mod cmo 13807  chash 14271  Word cword 14454   repeatS creps 14709   cyclShift ccsh 14729  cprime 16617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-word 14455  df-concat 14512  df-substr 14582  df-pfx 14612  df-reps 14710  df-csh 14730  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-gcd 16441  df-prm 16618  df-phi 16712
This theorem is referenced by:  cshwsidrepswmod0  17041
  Copyright terms: Public domain W3C validator