MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwsidrepsw Structured version   Visualization version   GIF version

Theorem cshwsidrepsw 16419
Description: If cyclically shifting a word of length being a prime number by a number of positions which is not divisible by the prime number results in the word itself, the word is a "repeated symbol word". (Contributed by AV, 18-May-2018.) (Revised by AV, 10-Nov-2018.)
Assertion
Ref Expression
cshwsidrepsw ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))

Proof of Theorem cshwsidrepsw
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (♯‘𝑊) ∈ ℙ)
21adantr 484 . . . . . . . 8 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (♯‘𝑊) ∈ ℙ)
3 simp1 1133 . . . . . . . . 9 ((𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊) → 𝐿 ∈ ℤ)
43adantl 485 . . . . . . . 8 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → 𝐿 ∈ ℤ)
5 simpr2 1192 . . . . . . . 8 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝐿 mod (♯‘𝑊)) ≠ 0)
62, 4, 53jca 1125 . . . . . . 7 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → ((♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0))
76adantr 484 . . . . . 6 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0))
8 simpr 488 . . . . . 6 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊)))
9 modprmn0modprm0 16134 . . . . . 6 (((♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0) → (𝑖 ∈ (0..^(♯‘𝑊)) → ∃𝑗 ∈ (0..^(♯‘𝑊))((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0))
107, 8, 9sylc 65 . . . . 5 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ∃𝑗 ∈ (0..^(♯‘𝑊))((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0)
11 oveq1 7142 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑘 · 𝐿) = (𝑗 · 𝐿))
1211oveq2d 7151 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑖 + (𝑘 · 𝐿)) = (𝑖 + (𝑗 · 𝐿)))
1312fvoveq1d 7157 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑊‘((𝑖 + (𝑘 · 𝐿)) mod (♯‘𝑊))) = (𝑊‘((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊))))
1413eqeq2d 2809 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝑊𝑖) = (𝑊‘((𝑖 + (𝑘 · 𝐿)) mod (♯‘𝑊))) ↔ (𝑊𝑖) = (𝑊‘((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)))))
15 simpl 486 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → 𝑊 ∈ Word 𝑉)
1615, 3anim12i 615 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝑊 ∈ Word 𝑉𝐿 ∈ ℤ))
1716adantr 484 . . . . . . . . . . 11 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊 ∈ Word 𝑉𝐿 ∈ ℤ))
1817adantl 485 . . . . . . . . . 10 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → (𝑊 ∈ Word 𝑉𝐿 ∈ ℤ))
19 simpr3 1193 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝑊 cyclShift 𝐿) = 𝑊)
2019anim1i 617 . . . . . . . . . . 11 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝐿) = 𝑊𝑖 ∈ (0..^(♯‘𝑊))))
2120adantl 485 . . . . . . . . . 10 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → ((𝑊 cyclShift 𝐿) = 𝑊𝑖 ∈ (0..^(♯‘𝑊))))
22 cshweqrep 14174 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) → (((𝑊 cyclShift 𝐿) = 𝑊𝑖 ∈ (0..^(♯‘𝑊))) → ∀𝑘 ∈ ℕ0 (𝑊𝑖) = (𝑊‘((𝑖 + (𝑘 · 𝐿)) mod (♯‘𝑊)))))
2318, 21, 22sylc 65 . . . . . . . . 9 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → ∀𝑘 ∈ ℕ0 (𝑊𝑖) = (𝑊‘((𝑖 + (𝑘 · 𝐿)) mod (♯‘𝑊))))
24 elfzonn0 13077 . . . . . . . . . 10 (𝑗 ∈ (0..^(♯‘𝑊)) → 𝑗 ∈ ℕ0)
2524ad2antrr 725 . . . . . . . . 9 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → 𝑗 ∈ ℕ0)
2614, 23, 25rspcdva 3573 . . . . . . . 8 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → (𝑊𝑖) = (𝑊‘((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊))))
27 fveq2 6645 . . . . . . . . . 10 (((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0 → (𝑊‘((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊))) = (𝑊‘0))
2827adantl 485 . . . . . . . . 9 ((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) → (𝑊‘((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊))) = (𝑊‘0))
2928adantr 484 . . . . . . . 8 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → (𝑊‘((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊))) = (𝑊‘0))
3026, 29eqtrd 2833 . . . . . . 7 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → (𝑊𝑖) = (𝑊‘0))
3130ex 416 . . . . . 6 ((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) → ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊𝑖) = (𝑊‘0)))
3231rexlimiva 3240 . . . . 5 (∃𝑗 ∈ (0..^(♯‘𝑊))((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0 → ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊𝑖) = (𝑊‘0)))
3310, 32mpcom 38 . . . 4 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊𝑖) = (𝑊‘0))
3433ralrimiva 3149 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
35 repswsymballbi 14133 . . . 4 (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
3635ad2antrr 725 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
3734, 36mpbird 260 . 2 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))
3837ex 416 1 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  cfv 6324  (class class class)co 7135  0cc0 10526   + caddc 10529   · cmul 10531  0cn0 11885  cz 11969  ..^cfzo 13028   mod cmo 13232  chash 13686  Word cword 13857   repeatS creps 14121   cyclShift ccsh 14141  cprime 16005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-hash 13687  df-word 13858  df-concat 13914  df-substr 13994  df-pfx 14024  df-reps 14122  df-csh 14142  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834  df-prm 16006  df-phi 16093
This theorem is referenced by:  cshwsidrepswmod0  16420
  Copyright terms: Public domain W3C validator