MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwsidrepsw Structured version   Visualization version   GIF version

Theorem cshwsidrepsw 16793
Description: If cyclically shifting a word of length being a prime number by a number of positions which is not divisible by the prime number results in the word itself, the word is a "repeated symbol word". (Contributed by AV, 18-May-2018.) (Revised by AV, 10-Nov-2018.)
Assertion
Ref Expression
cshwsidrepsw ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))

Proof of Theorem cshwsidrepsw
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (♯‘𝑊) ∈ ℙ)
21adantr 481 . . . . . . . 8 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (♯‘𝑊) ∈ ℙ)
3 simp1 1135 . . . . . . . . 9 ((𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊) → 𝐿 ∈ ℤ)
43adantl 482 . . . . . . . 8 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → 𝐿 ∈ ℤ)
5 simpr2 1194 . . . . . . . 8 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝐿 mod (♯‘𝑊)) ≠ 0)
62, 4, 53jca 1127 . . . . . . 7 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → ((♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0))
76adantr 481 . . . . . 6 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0))
8 simpr 485 . . . . . 6 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊)))
9 modprmn0modprm0 16506 . . . . . 6 (((♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0) → (𝑖 ∈ (0..^(♯‘𝑊)) → ∃𝑗 ∈ (0..^(♯‘𝑊))((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0))
107, 8, 9sylc 65 . . . . 5 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ∃𝑗 ∈ (0..^(♯‘𝑊))((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0)
11 oveq1 7278 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑘 · 𝐿) = (𝑗 · 𝐿))
1211oveq2d 7287 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑖 + (𝑘 · 𝐿)) = (𝑖 + (𝑗 · 𝐿)))
1312fvoveq1d 7293 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑊‘((𝑖 + (𝑘 · 𝐿)) mod (♯‘𝑊))) = (𝑊‘((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊))))
1413eqeq2d 2751 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝑊𝑖) = (𝑊‘((𝑖 + (𝑘 · 𝐿)) mod (♯‘𝑊))) ↔ (𝑊𝑖) = (𝑊‘((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)))))
15 simpl 483 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → 𝑊 ∈ Word 𝑉)
1615, 3anim12i 613 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝑊 ∈ Word 𝑉𝐿 ∈ ℤ))
1716adantr 481 . . . . . . . . . . 11 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊 ∈ Word 𝑉𝐿 ∈ ℤ))
1817adantl 482 . . . . . . . . . 10 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → (𝑊 ∈ Word 𝑉𝐿 ∈ ℤ))
19 simpr3 1195 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝑊 cyclShift 𝐿) = 𝑊)
2019anim1i 615 . . . . . . . . . . 11 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝐿) = 𝑊𝑖 ∈ (0..^(♯‘𝑊))))
2120adantl 482 . . . . . . . . . 10 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → ((𝑊 cyclShift 𝐿) = 𝑊𝑖 ∈ (0..^(♯‘𝑊))))
22 cshweqrep 14532 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) → (((𝑊 cyclShift 𝐿) = 𝑊𝑖 ∈ (0..^(♯‘𝑊))) → ∀𝑘 ∈ ℕ0 (𝑊𝑖) = (𝑊‘((𝑖 + (𝑘 · 𝐿)) mod (♯‘𝑊)))))
2318, 21, 22sylc 65 . . . . . . . . 9 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → ∀𝑘 ∈ ℕ0 (𝑊𝑖) = (𝑊‘((𝑖 + (𝑘 · 𝐿)) mod (♯‘𝑊))))
24 elfzonn0 13430 . . . . . . . . . 10 (𝑗 ∈ (0..^(♯‘𝑊)) → 𝑗 ∈ ℕ0)
2524ad2antrr 723 . . . . . . . . 9 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → 𝑗 ∈ ℕ0)
2614, 23, 25rspcdva 3563 . . . . . . . 8 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → (𝑊𝑖) = (𝑊‘((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊))))
27 fveq2 6771 . . . . . . . . . 10 (((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0 → (𝑊‘((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊))) = (𝑊‘0))
2827adantl 482 . . . . . . . . 9 ((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) → (𝑊‘((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊))) = (𝑊‘0))
2928adantr 481 . . . . . . . 8 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → (𝑊‘((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊))) = (𝑊‘0))
3026, 29eqtrd 2780 . . . . . . 7 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → (𝑊𝑖) = (𝑊‘0))
3130ex 413 . . . . . 6 ((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) → ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊𝑖) = (𝑊‘0)))
3231rexlimiva 3212 . . . . 5 (∃𝑗 ∈ (0..^(♯‘𝑊))((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0 → ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊𝑖) = (𝑊‘0)))
3310, 32mpcom 38 . . . 4 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊𝑖) = (𝑊‘0))
3433ralrimiva 3110 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
35 repswsymballbi 14491 . . . 4 (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
3635ad2antrr 723 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
3734, 36mpbird 256 . 2 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))
3837ex 413 1 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wral 3066  wrex 3067  cfv 6432  (class class class)co 7271  0cc0 10872   + caddc 10875   · cmul 10877  0cn0 12233  cz 12319  ..^cfzo 13381   mod cmo 13587  chash 14042  Word cword 14215   repeatS creps 14479   cyclShift ccsh 14499  cprime 16374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-oadd 8292  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-inf 9180  df-dju 9660  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12582  df-rp 12730  df-fz 13239  df-fzo 13382  df-fl 13510  df-mod 13588  df-seq 13720  df-exp 13781  df-hash 14043  df-word 14216  df-concat 14272  df-substr 14352  df-pfx 14382  df-reps 14480  df-csh 14500  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-dvds 15962  df-gcd 16200  df-prm 16375  df-phi 16465
This theorem is referenced by:  cshwsidrepswmod0  16794
  Copyright terms: Public domain W3C validator