MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwsidrepsw Structured version   Visualization version   GIF version

Theorem cshwsidrepsw 17128
Description: If cyclically shifting a word of length being a prime number by a number of positions which is not divisible by the prime number results in the word itself, the word is a "repeated symbol word". (Contributed by AV, 18-May-2018.) (Revised by AV, 10-Nov-2018.)
Assertion
Ref Expression
cshwsidrepsw ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))

Proof of Theorem cshwsidrepsw
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (♯‘𝑊) ∈ ℙ)
21adantr 480 . . . . . . . 8 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (♯‘𝑊) ∈ ℙ)
3 simp1 1135 . . . . . . . . 9 ((𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊) → 𝐿 ∈ ℤ)
43adantl 481 . . . . . . . 8 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → 𝐿 ∈ ℤ)
5 simpr2 1194 . . . . . . . 8 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝐿 mod (♯‘𝑊)) ≠ 0)
62, 4, 53jca 1127 . . . . . . 7 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → ((♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0))
76adantr 480 . . . . . 6 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0))
8 simpr 484 . . . . . 6 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊)))
9 modprmn0modprm0 16841 . . . . . 6 (((♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0) → (𝑖 ∈ (0..^(♯‘𝑊)) → ∃𝑗 ∈ (0..^(♯‘𝑊))((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0))
107, 8, 9sylc 65 . . . . 5 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ∃𝑗 ∈ (0..^(♯‘𝑊))((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0)
11 oveq1 7438 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑘 · 𝐿) = (𝑗 · 𝐿))
1211oveq2d 7447 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑖 + (𝑘 · 𝐿)) = (𝑖 + (𝑗 · 𝐿)))
1312fvoveq1d 7453 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑊‘((𝑖 + (𝑘 · 𝐿)) mod (♯‘𝑊))) = (𝑊‘((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊))))
1413eqeq2d 2746 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝑊𝑖) = (𝑊‘((𝑖 + (𝑘 · 𝐿)) mod (♯‘𝑊))) ↔ (𝑊𝑖) = (𝑊‘((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)))))
15 simpl 482 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → 𝑊 ∈ Word 𝑉)
1615, 3anim12i 613 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝑊 ∈ Word 𝑉𝐿 ∈ ℤ))
1716adantr 480 . . . . . . . . . . 11 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊 ∈ Word 𝑉𝐿 ∈ ℤ))
1817adantl 481 . . . . . . . . . 10 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → (𝑊 ∈ Word 𝑉𝐿 ∈ ℤ))
19 simpr3 1195 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝑊 cyclShift 𝐿) = 𝑊)
2019anim1i 615 . . . . . . . . . . 11 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝐿) = 𝑊𝑖 ∈ (0..^(♯‘𝑊))))
2120adantl 481 . . . . . . . . . 10 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → ((𝑊 cyclShift 𝐿) = 𝑊𝑖 ∈ (0..^(♯‘𝑊))))
22 cshweqrep 14856 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) → (((𝑊 cyclShift 𝐿) = 𝑊𝑖 ∈ (0..^(♯‘𝑊))) → ∀𝑘 ∈ ℕ0 (𝑊𝑖) = (𝑊‘((𝑖 + (𝑘 · 𝐿)) mod (♯‘𝑊)))))
2318, 21, 22sylc 65 . . . . . . . . 9 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → ∀𝑘 ∈ ℕ0 (𝑊𝑖) = (𝑊‘((𝑖 + (𝑘 · 𝐿)) mod (♯‘𝑊))))
24 elfzonn0 13744 . . . . . . . . . 10 (𝑗 ∈ (0..^(♯‘𝑊)) → 𝑗 ∈ ℕ0)
2524ad2antrr 726 . . . . . . . . 9 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → 𝑗 ∈ ℕ0)
2614, 23, 25rspcdva 3623 . . . . . . . 8 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → (𝑊𝑖) = (𝑊‘((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊))))
27 fveq2 6907 . . . . . . . . . 10 (((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0 → (𝑊‘((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊))) = (𝑊‘0))
2827adantl 481 . . . . . . . . 9 ((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) → (𝑊‘((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊))) = (𝑊‘0))
2928adantr 480 . . . . . . . 8 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → (𝑊‘((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊))) = (𝑊‘0))
3026, 29eqtrd 2775 . . . . . . 7 (((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) ∧ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊)))) → (𝑊𝑖) = (𝑊‘0))
3130ex 412 . . . . . 6 ((𝑗 ∈ (0..^(♯‘𝑊)) ∧ ((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0) → ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊𝑖) = (𝑊‘0)))
3231rexlimiva 3145 . . . . 5 (∃𝑗 ∈ (0..^(♯‘𝑊))((𝑖 + (𝑗 · 𝐿)) mod (♯‘𝑊)) = 0 → ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊𝑖) = (𝑊‘0)))
3310, 32mpcom 38 . . . 4 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊𝑖) = (𝑊‘0))
3433ralrimiva 3144 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
35 repswsymballbi 14815 . . . 4 (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
3635ad2antrr 726 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
3734, 36mpbird 257 . 2 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))
3837ex 412 1 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  cfv 6563  (class class class)co 7431  0cc0 11153   + caddc 11156   · cmul 11158  0cn0 12524  cz 12611  ..^cfzo 13691   mod cmo 13906  chash 14366  Word cword 14549   repeatS creps 14803   cyclShift ccsh 14823  cprime 16705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-word 14550  df-concat 14606  df-substr 14676  df-pfx 14706  df-reps 14804  df-csh 14824  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-prm 16706  df-phi 16800
This theorem is referenced by:  cshwsidrepswmod0  17129
  Copyright terms: Public domain W3C validator