| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmdvd | Structured version Visualization version GIF version | ||
| Description: A ring homomorphism preserves ratios. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| Ref | Expression |
|---|---|
| rhmdvd.u | ⊢ 𝑈 = (Unit‘𝑆) |
| rhmdvd.x | ⊢ 𝑋 = (Base‘𝑅) |
| rhmdvd.d | ⊢ / = (/r‘𝑆) |
| rhmdvd.m | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| rhmdvd | ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → ((𝐹‘𝐴) / (𝐹‘𝐵)) = ((𝐹‘(𝐴 · 𝐶)) / (𝐹‘(𝐵 · 𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → 𝐹 ∈ (𝑅 RingHom 𝑆)) | |
| 2 | simp21 1207 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → 𝐴 ∈ 𝑋) | |
| 3 | simp23 1209 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → 𝐶 ∈ 𝑋) | |
| 4 | rhmdvd.x | . . . . 5 ⊢ 𝑋 = (Base‘𝑅) | |
| 5 | rhmdvd.m | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 6 | eqid 2735 | . . . . 5 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 7 | 4, 5, 6 | rhmmul 20446 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐶)) = ((𝐹‘𝐴)(.r‘𝑆)(𝐹‘𝐶))) |
| 8 | 1, 2, 3, 7 | syl3anc 1373 | . . 3 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → (𝐹‘(𝐴 · 𝐶)) = ((𝐹‘𝐴)(.r‘𝑆)(𝐹‘𝐶))) |
| 9 | simp22 1208 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → 𝐵 ∈ 𝑋) | |
| 10 | 4, 5, 6 | rhmmul 20446 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘(𝐵 · 𝐶)) = ((𝐹‘𝐵)(.r‘𝑆)(𝐹‘𝐶))) |
| 11 | 1, 9, 3, 10 | syl3anc 1373 | . . 3 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → (𝐹‘(𝐵 · 𝐶)) = ((𝐹‘𝐵)(.r‘𝑆)(𝐹‘𝐶))) |
| 12 | 8, 11 | oveq12d 7423 | . 2 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → ((𝐹‘(𝐴 · 𝐶)) / (𝐹‘(𝐵 · 𝐶))) = (((𝐹‘𝐴)(.r‘𝑆)(𝐹‘𝐶)) / ((𝐹‘𝐵)(.r‘𝑆)(𝐹‘𝐶)))) |
| 13 | rhmrcl2 20437 | . . . 4 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) | |
| 14 | 13 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → 𝑆 ∈ Ring) |
| 15 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 16 | 4, 15 | rhmf 20445 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝑋⟶(Base‘𝑆)) |
| 17 | 16 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → 𝐹:𝑋⟶(Base‘𝑆)) |
| 18 | 17, 2 | ffvelcdmd 7075 | . . 3 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → (𝐹‘𝐴) ∈ (Base‘𝑆)) |
| 19 | simp3l 1202 | . . 3 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → (𝐹‘𝐵) ∈ 𝑈) | |
| 20 | simp3r 1203 | . . 3 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → (𝐹‘𝐶) ∈ 𝑈) | |
| 21 | rhmdvd.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑆) | |
| 22 | rhmdvd.d | . . . 4 ⊢ / = (/r‘𝑆) | |
| 23 | 15, 21, 22, 6 | dvrcan5 33231 | . . 3 ⊢ ((𝑆 ∈ Ring ∧ ((𝐹‘𝐴) ∈ (Base‘𝑆) ∧ (𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → (((𝐹‘𝐴)(.r‘𝑆)(𝐹‘𝐶)) / ((𝐹‘𝐵)(.r‘𝑆)(𝐹‘𝐶))) = ((𝐹‘𝐴) / (𝐹‘𝐵))) |
| 24 | 14, 18, 19, 20, 23 | syl13anc 1374 | . 2 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → (((𝐹‘𝐴)(.r‘𝑆)(𝐹‘𝐶)) / ((𝐹‘𝐵)(.r‘𝑆)(𝐹‘𝐶))) = ((𝐹‘𝐴) / (𝐹‘𝐵))) |
| 25 | 12, 24 | eqtr2d 2771 | 1 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → ((𝐹‘𝐴) / (𝐹‘𝐵)) = ((𝐹‘(𝐴 · 𝐶)) / (𝐹‘(𝐵 · 𝐶)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 .rcmulr 17272 Ringcrg 20193 Unitcui 20315 /rcdvr 20360 RingHom crh 20429 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-grp 18919 df-minusg 18920 df-ghm 19196 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-dvr 20361 df-rhm 20432 |
| This theorem is referenced by: qqhval2lem 34012 qqhghm 34019 qqhrhm 34020 |
| Copyright terms: Public domain | W3C validator |