Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmdvd Structured version   Visualization version   GIF version

Theorem rhmdvd 30161
Description: A ring homomorphism preserves ratios. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
rhmdvd.u 𝑈 = (Unit‘𝑆)
rhmdvd.x 𝑋 = (Base‘𝑅)
rhmdvd.d / = (/r𝑆)
rhmdvd.m · = (.r𝑅)
Assertion
Ref Expression
rhmdvd ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → ((𝐹𝐴) / (𝐹𝐵)) = ((𝐹‘(𝐴 · 𝐶)) / (𝐹‘(𝐵 · 𝐶))))

Proof of Theorem rhmdvd
StepHypRef Expression
1 simp1 1130 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
2 simp21 1248 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → 𝐴𝑋)
3 simp23 1250 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → 𝐶𝑋)
4 rhmdvd.x . . . . 5 𝑋 = (Base‘𝑅)
5 rhmdvd.m . . . . 5 · = (.r𝑅)
6 eqid 2771 . . . . 5 (.r𝑆) = (.r𝑆)
74, 5, 6rhmmul 18937 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐶𝑋) → (𝐹‘(𝐴 · 𝐶)) = ((𝐹𝐴)(.r𝑆)(𝐹𝐶)))
81, 2, 3, 7syl3anc 1476 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → (𝐹‘(𝐴 · 𝐶)) = ((𝐹𝐴)(.r𝑆)(𝐹𝐶)))
9 simp22 1249 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → 𝐵𝑋)
104, 5, 6rhmmul 18937 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐵𝑋𝐶𝑋) → (𝐹‘(𝐵 · 𝐶)) = ((𝐹𝐵)(.r𝑆)(𝐹𝐶)))
111, 9, 3, 10syl3anc 1476 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → (𝐹‘(𝐵 · 𝐶)) = ((𝐹𝐵)(.r𝑆)(𝐹𝐶)))
128, 11oveq12d 6811 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → ((𝐹‘(𝐴 · 𝐶)) / (𝐹‘(𝐵 · 𝐶))) = (((𝐹𝐴)(.r𝑆)(𝐹𝐶)) / ((𝐹𝐵)(.r𝑆)(𝐹𝐶))))
13 rhmrcl2 18930 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
14133ad2ant1 1127 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → 𝑆 ∈ Ring)
15 eqid 2771 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
164, 15rhmf 18936 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝑋⟶(Base‘𝑆))
17163ad2ant1 1127 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → 𝐹:𝑋⟶(Base‘𝑆))
1817, 2ffvelrnd 6503 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → (𝐹𝐴) ∈ (Base‘𝑆))
19 simp3l 1243 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → (𝐹𝐵) ∈ 𝑈)
20 simp3r 1244 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → (𝐹𝐶) ∈ 𝑈)
21 rhmdvd.u . . . 4 𝑈 = (Unit‘𝑆)
22 rhmdvd.d . . . 4 / = (/r𝑆)
2315, 21, 22, 6dvrcan5 30133 . . 3 ((𝑆 ∈ Ring ∧ ((𝐹𝐴) ∈ (Base‘𝑆) ∧ (𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → (((𝐹𝐴)(.r𝑆)(𝐹𝐶)) / ((𝐹𝐵)(.r𝑆)(𝐹𝐶))) = ((𝐹𝐴) / (𝐹𝐵)))
2414, 18, 19, 20, 23syl13anc 1478 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → (((𝐹𝐴)(.r𝑆)(𝐹𝐶)) / ((𝐹𝐵)(.r𝑆)(𝐹𝐶))) = ((𝐹𝐴) / (𝐹𝐵)))
2512, 24eqtr2d 2806 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → ((𝐹𝐴) / (𝐹𝐵)) = ((𝐹‘(𝐴 · 𝐶)) / (𝐹‘(𝐵 · 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wf 6027  cfv 6031  (class class class)co 6793  Basecbs 16064  .rcmulr 16150  Ringcrg 18755  Unitcui 18847  /rcdvr 18890   RingHom crh 18922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-grp 17633  df-minusg 17634  df-ghm 17866  df-mgp 18698  df-ur 18710  df-ring 18757  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-dvr 18891  df-rnghom 18925
This theorem is referenced by:  qqhval2lem  30365  qqhghm  30372  qqhrhm  30373
  Copyright terms: Public domain W3C validator