| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmdvd | Structured version Visualization version GIF version | ||
| Description: A ring homomorphism preserves ratios. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| Ref | Expression |
|---|---|
| rhmdvd.u | ⊢ 𝑈 = (Unit‘𝑆) |
| rhmdvd.x | ⊢ 𝑋 = (Base‘𝑅) |
| rhmdvd.d | ⊢ / = (/r‘𝑆) |
| rhmdvd.m | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| rhmdvd | ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → ((𝐹‘𝐴) / (𝐹‘𝐵)) = ((𝐹‘(𝐴 · 𝐶)) / (𝐹‘(𝐵 · 𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → 𝐹 ∈ (𝑅 RingHom 𝑆)) | |
| 2 | simp21 1207 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → 𝐴 ∈ 𝑋) | |
| 3 | simp23 1209 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → 𝐶 ∈ 𝑋) | |
| 4 | rhmdvd.x | . . . . 5 ⊢ 𝑋 = (Base‘𝑅) | |
| 5 | rhmdvd.m | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 7 | 4, 5, 6 | rhmmul 20371 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐶)) = ((𝐹‘𝐴)(.r‘𝑆)(𝐹‘𝐶))) |
| 8 | 1, 2, 3, 7 | syl3anc 1373 | . . 3 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → (𝐹‘(𝐴 · 𝐶)) = ((𝐹‘𝐴)(.r‘𝑆)(𝐹‘𝐶))) |
| 9 | simp22 1208 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → 𝐵 ∈ 𝑋) | |
| 10 | 4, 5, 6 | rhmmul 20371 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘(𝐵 · 𝐶)) = ((𝐹‘𝐵)(.r‘𝑆)(𝐹‘𝐶))) |
| 11 | 1, 9, 3, 10 | syl3anc 1373 | . . 3 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → (𝐹‘(𝐵 · 𝐶)) = ((𝐹‘𝐵)(.r‘𝑆)(𝐹‘𝐶))) |
| 12 | 8, 11 | oveq12d 7367 | . 2 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → ((𝐹‘(𝐴 · 𝐶)) / (𝐹‘(𝐵 · 𝐶))) = (((𝐹‘𝐴)(.r‘𝑆)(𝐹‘𝐶)) / ((𝐹‘𝐵)(.r‘𝑆)(𝐹‘𝐶)))) |
| 13 | rhmrcl2 20362 | . . . 4 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) | |
| 14 | 13 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → 𝑆 ∈ Ring) |
| 15 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 16 | 4, 15 | rhmf 20370 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝑋⟶(Base‘𝑆)) |
| 17 | 16 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → 𝐹:𝑋⟶(Base‘𝑆)) |
| 18 | 17, 2 | ffvelcdmd 7019 | . . 3 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → (𝐹‘𝐴) ∈ (Base‘𝑆)) |
| 19 | simp3l 1202 | . . 3 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → (𝐹‘𝐵) ∈ 𝑈) | |
| 20 | simp3r 1203 | . . 3 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → (𝐹‘𝐶) ∈ 𝑈) | |
| 21 | rhmdvd.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑆) | |
| 22 | rhmdvd.d | . . . 4 ⊢ / = (/r‘𝑆) | |
| 23 | 15, 21, 22, 6 | dvrcan5 33176 | . . 3 ⊢ ((𝑆 ∈ Ring ∧ ((𝐹‘𝐴) ∈ (Base‘𝑆) ∧ (𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → (((𝐹‘𝐴)(.r‘𝑆)(𝐹‘𝐶)) / ((𝐹‘𝐵)(.r‘𝑆)(𝐹‘𝐶))) = ((𝐹‘𝐴) / (𝐹‘𝐵))) |
| 24 | 14, 18, 19, 20, 23 | syl13anc 1374 | . 2 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → (((𝐹‘𝐴)(.r‘𝑆)(𝐹‘𝐶)) / ((𝐹‘𝐵)(.r‘𝑆)(𝐹‘𝐶))) = ((𝐹‘𝐴) / (𝐹‘𝐵))) |
| 25 | 12, 24 | eqtr2d 2765 | 1 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → ((𝐹‘𝐴) / (𝐹‘𝐵)) = ((𝐹‘(𝐴 · 𝐶)) / (𝐹‘(𝐵 · 𝐶)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 .rcmulr 17162 Ringcrg 20118 Unitcui 20240 /rcdvr 20285 RingHom crh 20354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-grp 18815 df-minusg 18816 df-ghm 19092 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-rhm 20357 |
| This theorem is referenced by: qqhval2lem 33948 qqhghm 33955 qqhrhm 33956 |
| Copyright terms: Public domain | W3C validator |