Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringexp0nn Structured version   Visualization version   GIF version

Theorem ringexp0nn 41637
Description: Zero to the power of a positive integer is zero. (Contributed by metakunt, 5-May-2025.)
Hypotheses
Ref Expression
ringexp0nn.1 (𝜑𝑅 ∈ Ring)
ringexp0nn.2 (𝜑𝑁 ∈ ℕ)
ringexp0nn.3 = (.g‘(mulGrp‘𝑅))
Assertion
Ref Expression
ringexp0nn (𝜑 → (𝑁 (0g𝑅)) = (0g𝑅))

Proof of Theorem ringexp0nn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringexp0nn.2 . . 3 (𝜑𝑁 ∈ ℕ)
21ancli 547 . 2 (𝜑 → (𝜑𝑁 ∈ ℕ))
3 oveq1 7433 . . . 4 (𝑥 = 1 → (𝑥 (0g𝑅)) = (1 (0g𝑅)))
43eqeq1d 2730 . . 3 (𝑥 = 1 → ((𝑥 (0g𝑅)) = (0g𝑅) ↔ (1 (0g𝑅)) = (0g𝑅)))
5 oveq1 7433 . . . 4 (𝑥 = 𝑦 → (𝑥 (0g𝑅)) = (𝑦 (0g𝑅)))
65eqeq1d 2730 . . 3 (𝑥 = 𝑦 → ((𝑥 (0g𝑅)) = (0g𝑅) ↔ (𝑦 (0g𝑅)) = (0g𝑅)))
7 oveq1 7433 . . . 4 (𝑥 = (𝑦 + 1) → (𝑥 (0g𝑅)) = ((𝑦 + 1) (0g𝑅)))
87eqeq1d 2730 . . 3 (𝑥 = (𝑦 + 1) → ((𝑥 (0g𝑅)) = (0g𝑅) ↔ ((𝑦 + 1) (0g𝑅)) = (0g𝑅)))
9 oveq1 7433 . . . 4 (𝑥 = 𝑁 → (𝑥 (0g𝑅)) = (𝑁 (0g𝑅)))
109eqeq1d 2730 . . 3 (𝑥 = 𝑁 → ((𝑥 (0g𝑅)) = (0g𝑅) ↔ (𝑁 (0g𝑅)) = (0g𝑅)))
11 ringexp0nn.1 . . . . . . 7 (𝜑𝑅 ∈ Ring)
12 ringmnd 20190 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
1311, 12syl 17 . . . . . 6 (𝜑𝑅 ∈ Mnd)
14 eqid 2728 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
15 eqid 2728 . . . . . . 7 (0g𝑅) = (0g𝑅)
1614, 15mndidcl 18716 . . . . . 6 (𝑅 ∈ Mnd → (0g𝑅) ∈ (Base‘𝑅))
1713, 16syl 17 . . . . 5 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
18 eqid 2728 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1918, 14mgpbas 20087 . . . . . 6 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
2019a1i 11 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(mulGrp‘𝑅)))
2117, 20eleqtrd 2831 . . . 4 (𝜑 → (0g𝑅) ∈ (Base‘(mulGrp‘𝑅)))
22 eqid 2728 . . . . 5 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
23 ringexp0nn.3 . . . . 5 = (.g‘(mulGrp‘𝑅))
2422, 23mulg1 19043 . . . 4 ((0g𝑅) ∈ (Base‘(mulGrp‘𝑅)) → (1 (0g𝑅)) = (0g𝑅))
2521, 24syl 17 . . 3 (𝜑 → (1 (0g𝑅)) = (0g𝑅))
26 simplr 767 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ (𝑦 (0g𝑅)) = (0g𝑅)) → 𝑦 ∈ ℕ)
2721ad2antrr 724 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ (𝑦 (0g𝑅)) = (0g𝑅)) → (0g𝑅) ∈ (Base‘(mulGrp‘𝑅)))
28 eqid 2728 . . . . . 6 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
2922, 23, 28mulgnnp1 19044 . . . . 5 ((𝑦 ∈ ℕ ∧ (0g𝑅) ∈ (Base‘(mulGrp‘𝑅))) → ((𝑦 + 1) (0g𝑅)) = ((𝑦 (0g𝑅))(+g‘(mulGrp‘𝑅))(0g𝑅)))
3026, 27, 29syl2anc 582 . . . 4 (((𝜑𝑦 ∈ ℕ) ∧ (𝑦 (0g𝑅)) = (0g𝑅)) → ((𝑦 + 1) (0g𝑅)) = ((𝑦 (0g𝑅))(+g‘(mulGrp‘𝑅))(0g𝑅)))
31 simpr 483 . . . . . 6 (((𝜑𝑦 ∈ ℕ) ∧ (𝑦 (0g𝑅)) = (0g𝑅)) → (𝑦 (0g𝑅)) = (0g𝑅))
3231oveq1d 7441 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ (𝑦 (0g𝑅)) = (0g𝑅)) → ((𝑦 (0g𝑅))(+g‘(mulGrp‘𝑅))(0g𝑅)) = ((0g𝑅)(+g‘(mulGrp‘𝑅))(0g𝑅)))
33 eqid 2728 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
3418, 33mgpplusg 20085 . . . . . . . . . 10 (.r𝑅) = (+g‘(mulGrp‘𝑅))
3534eqcomi 2737 . . . . . . . . 9 (+g‘(mulGrp‘𝑅)) = (.r𝑅)
3614, 35, 15ringrz 20237 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (0g𝑅) ∈ (Base‘𝑅)) → ((0g𝑅)(+g‘(mulGrp‘𝑅))(0g𝑅)) = (0g𝑅))
3711, 17, 36syl2anc 582 . . . . . . 7 (𝜑 → ((0g𝑅)(+g‘(mulGrp‘𝑅))(0g𝑅)) = (0g𝑅))
3837adantr 479 . . . . . 6 ((𝜑𝑦 ∈ ℕ) → ((0g𝑅)(+g‘(mulGrp‘𝑅))(0g𝑅)) = (0g𝑅))
3938adantr 479 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ (𝑦 (0g𝑅)) = (0g𝑅)) → ((0g𝑅)(+g‘(mulGrp‘𝑅))(0g𝑅)) = (0g𝑅))
4032, 39eqtrd 2768 . . . 4 (((𝜑𝑦 ∈ ℕ) ∧ (𝑦 (0g𝑅)) = (0g𝑅)) → ((𝑦 (0g𝑅))(+g‘(mulGrp‘𝑅))(0g𝑅)) = (0g𝑅))
4130, 40eqtrd 2768 . . 3 (((𝜑𝑦 ∈ ℕ) ∧ (𝑦 (0g𝑅)) = (0g𝑅)) → ((𝑦 + 1) (0g𝑅)) = (0g𝑅))
424, 6, 8, 10, 25, 41nnindd 12270 . 2 ((𝜑𝑁 ∈ ℕ) → (𝑁 (0g𝑅)) = (0g𝑅))
432, 42syl 17 1 (𝜑 → (𝑁 (0g𝑅)) = (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cfv 6553  (class class class)co 7426  1c1 11147   + caddc 11149  cn 12250  Basecbs 17187  +gcplusg 17240  .rcmulr 17241  0gc0g 17428  Mndcmnd 18701  .gcmg 19030  mulGrpcmgp 20081  Ringcrg 20180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-n0 12511  df-z 12597  df-uz 12861  df-seq 14007  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-plusg 17253  df-0g 17430  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-grp 18900  df-minusg 18901  df-mulg 19031  df-cmn 19744  df-abl 19745  df-mgp 20082  df-rng 20100  df-ur 20129  df-ring 20182
This theorem is referenced by:  aks6d1c5lem2  41641
  Copyright terms: Public domain W3C validator