Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringexp0nn Structured version   Visualization version   GIF version

Theorem ringexp0nn 42091
Description: Zero to the power of a positive integer is zero. (Contributed by metakunt, 5-May-2025.)
Hypotheses
Ref Expression
ringexp0nn.1 (𝜑𝑅 ∈ Ring)
ringexp0nn.2 (𝜑𝑁 ∈ ℕ)
ringexp0nn.3 = (.g‘(mulGrp‘𝑅))
Assertion
Ref Expression
ringexp0nn (𝜑 → (𝑁 (0g𝑅)) = (0g𝑅))

Proof of Theorem ringexp0nn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringexp0nn.2 . . 3 (𝜑𝑁 ∈ ℕ)
21ancli 548 . 2 (𝜑 → (𝜑𝑁 ∈ ℕ))
3 oveq1 7455 . . . 4 (𝑥 = 1 → (𝑥 (0g𝑅)) = (1 (0g𝑅)))
43eqeq1d 2742 . . 3 (𝑥 = 1 → ((𝑥 (0g𝑅)) = (0g𝑅) ↔ (1 (0g𝑅)) = (0g𝑅)))
5 oveq1 7455 . . . 4 (𝑥 = 𝑦 → (𝑥 (0g𝑅)) = (𝑦 (0g𝑅)))
65eqeq1d 2742 . . 3 (𝑥 = 𝑦 → ((𝑥 (0g𝑅)) = (0g𝑅) ↔ (𝑦 (0g𝑅)) = (0g𝑅)))
7 oveq1 7455 . . . 4 (𝑥 = (𝑦 + 1) → (𝑥 (0g𝑅)) = ((𝑦 + 1) (0g𝑅)))
87eqeq1d 2742 . . 3 (𝑥 = (𝑦 + 1) → ((𝑥 (0g𝑅)) = (0g𝑅) ↔ ((𝑦 + 1) (0g𝑅)) = (0g𝑅)))
9 oveq1 7455 . . . 4 (𝑥 = 𝑁 → (𝑥 (0g𝑅)) = (𝑁 (0g𝑅)))
109eqeq1d 2742 . . 3 (𝑥 = 𝑁 → ((𝑥 (0g𝑅)) = (0g𝑅) ↔ (𝑁 (0g𝑅)) = (0g𝑅)))
11 ringexp0nn.1 . . . . . . 7 (𝜑𝑅 ∈ Ring)
12 ringmnd 20270 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
1311, 12syl 17 . . . . . 6 (𝜑𝑅 ∈ Mnd)
14 eqid 2740 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
15 eqid 2740 . . . . . . 7 (0g𝑅) = (0g𝑅)
1614, 15mndidcl 18787 . . . . . 6 (𝑅 ∈ Mnd → (0g𝑅) ∈ (Base‘𝑅))
1713, 16syl 17 . . . . 5 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
18 eqid 2740 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1918, 14mgpbas 20167 . . . . . 6 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
2019a1i 11 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(mulGrp‘𝑅)))
2117, 20eleqtrd 2846 . . . 4 (𝜑 → (0g𝑅) ∈ (Base‘(mulGrp‘𝑅)))
22 eqid 2740 . . . . 5 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
23 ringexp0nn.3 . . . . 5 = (.g‘(mulGrp‘𝑅))
2422, 23mulg1 19121 . . . 4 ((0g𝑅) ∈ (Base‘(mulGrp‘𝑅)) → (1 (0g𝑅)) = (0g𝑅))
2521, 24syl 17 . . 3 (𝜑 → (1 (0g𝑅)) = (0g𝑅))
26 simplr 768 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ (𝑦 (0g𝑅)) = (0g𝑅)) → 𝑦 ∈ ℕ)
2721ad2antrr 725 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ (𝑦 (0g𝑅)) = (0g𝑅)) → (0g𝑅) ∈ (Base‘(mulGrp‘𝑅)))
28 eqid 2740 . . . . . 6 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
2922, 23, 28mulgnnp1 19122 . . . . 5 ((𝑦 ∈ ℕ ∧ (0g𝑅) ∈ (Base‘(mulGrp‘𝑅))) → ((𝑦 + 1) (0g𝑅)) = ((𝑦 (0g𝑅))(+g‘(mulGrp‘𝑅))(0g𝑅)))
3026, 27, 29syl2anc 583 . . . 4 (((𝜑𝑦 ∈ ℕ) ∧ (𝑦 (0g𝑅)) = (0g𝑅)) → ((𝑦 + 1) (0g𝑅)) = ((𝑦 (0g𝑅))(+g‘(mulGrp‘𝑅))(0g𝑅)))
31 simpr 484 . . . . . 6 (((𝜑𝑦 ∈ ℕ) ∧ (𝑦 (0g𝑅)) = (0g𝑅)) → (𝑦 (0g𝑅)) = (0g𝑅))
3231oveq1d 7463 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ (𝑦 (0g𝑅)) = (0g𝑅)) → ((𝑦 (0g𝑅))(+g‘(mulGrp‘𝑅))(0g𝑅)) = ((0g𝑅)(+g‘(mulGrp‘𝑅))(0g𝑅)))
33 eqid 2740 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
3418, 33mgpplusg 20165 . . . . . . . . . 10 (.r𝑅) = (+g‘(mulGrp‘𝑅))
3534eqcomi 2749 . . . . . . . . 9 (+g‘(mulGrp‘𝑅)) = (.r𝑅)
3614, 35, 15ringrz 20317 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (0g𝑅) ∈ (Base‘𝑅)) → ((0g𝑅)(+g‘(mulGrp‘𝑅))(0g𝑅)) = (0g𝑅))
3711, 17, 36syl2anc 583 . . . . . . 7 (𝜑 → ((0g𝑅)(+g‘(mulGrp‘𝑅))(0g𝑅)) = (0g𝑅))
3837adantr 480 . . . . . 6 ((𝜑𝑦 ∈ ℕ) → ((0g𝑅)(+g‘(mulGrp‘𝑅))(0g𝑅)) = (0g𝑅))
3938adantr 480 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ (𝑦 (0g𝑅)) = (0g𝑅)) → ((0g𝑅)(+g‘(mulGrp‘𝑅))(0g𝑅)) = (0g𝑅))
4032, 39eqtrd 2780 . . . 4 (((𝜑𝑦 ∈ ℕ) ∧ (𝑦 (0g𝑅)) = (0g𝑅)) → ((𝑦 (0g𝑅))(+g‘(mulGrp‘𝑅))(0g𝑅)) = (0g𝑅))
4130, 40eqtrd 2780 . . 3 (((𝜑𝑦 ∈ ℕ) ∧ (𝑦 (0g𝑅)) = (0g𝑅)) → ((𝑦 + 1) (0g𝑅)) = (0g𝑅))
424, 6, 8, 10, 25, 41nnindd 12313 . 2 ((𝜑𝑁 ∈ ℕ) → (𝑁 (0g𝑅)) = (0g𝑅))
432, 42syl 17 1 (𝜑 → (𝑁 (0g𝑅)) = (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  1c1 11185   + caddc 11187  cn 12293  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  0gc0g 17499  Mndcmnd 18772  .gcmg 19107  mulGrpcmgp 20161  Ringcrg 20260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-mulg 19108  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262
This theorem is referenced by:  aks6d1c5lem2  42095
  Copyright terms: Public domain W3C validator