Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringexp0nn Structured version   Visualization version   GIF version

Theorem ringexp0nn 42116
Description: Zero to the power of a positive integer is zero. (Contributed by metakunt, 5-May-2025.)
Hypotheses
Ref Expression
ringexp0nn.1 (𝜑𝑅 ∈ Ring)
ringexp0nn.2 (𝜑𝑁 ∈ ℕ)
ringexp0nn.3 = (.g‘(mulGrp‘𝑅))
Assertion
Ref Expression
ringexp0nn (𝜑 → (𝑁 (0g𝑅)) = (0g𝑅))

Proof of Theorem ringexp0nn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringexp0nn.2 . . 3 (𝜑𝑁 ∈ ℕ)
21ancli 548 . 2 (𝜑 → (𝜑𝑁 ∈ ℕ))
3 oveq1 7438 . . . 4 (𝑥 = 1 → (𝑥 (0g𝑅)) = (1 (0g𝑅)))
43eqeq1d 2737 . . 3 (𝑥 = 1 → ((𝑥 (0g𝑅)) = (0g𝑅) ↔ (1 (0g𝑅)) = (0g𝑅)))
5 oveq1 7438 . . . 4 (𝑥 = 𝑦 → (𝑥 (0g𝑅)) = (𝑦 (0g𝑅)))
65eqeq1d 2737 . . 3 (𝑥 = 𝑦 → ((𝑥 (0g𝑅)) = (0g𝑅) ↔ (𝑦 (0g𝑅)) = (0g𝑅)))
7 oveq1 7438 . . . 4 (𝑥 = (𝑦 + 1) → (𝑥 (0g𝑅)) = ((𝑦 + 1) (0g𝑅)))
87eqeq1d 2737 . . 3 (𝑥 = (𝑦 + 1) → ((𝑥 (0g𝑅)) = (0g𝑅) ↔ ((𝑦 + 1) (0g𝑅)) = (0g𝑅)))
9 oveq1 7438 . . . 4 (𝑥 = 𝑁 → (𝑥 (0g𝑅)) = (𝑁 (0g𝑅)))
109eqeq1d 2737 . . 3 (𝑥 = 𝑁 → ((𝑥 (0g𝑅)) = (0g𝑅) ↔ (𝑁 (0g𝑅)) = (0g𝑅)))
11 ringexp0nn.1 . . . . . . 7 (𝜑𝑅 ∈ Ring)
12 ringmnd 20261 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
1311, 12syl 17 . . . . . 6 (𝜑𝑅 ∈ Mnd)
14 eqid 2735 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
15 eqid 2735 . . . . . . 7 (0g𝑅) = (0g𝑅)
1614, 15mndidcl 18775 . . . . . 6 (𝑅 ∈ Mnd → (0g𝑅) ∈ (Base‘𝑅))
1713, 16syl 17 . . . . 5 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
18 eqid 2735 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1918, 14mgpbas 20158 . . . . . 6 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
2019a1i 11 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(mulGrp‘𝑅)))
2117, 20eleqtrd 2841 . . . 4 (𝜑 → (0g𝑅) ∈ (Base‘(mulGrp‘𝑅)))
22 eqid 2735 . . . . 5 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
23 ringexp0nn.3 . . . . 5 = (.g‘(mulGrp‘𝑅))
2422, 23mulg1 19112 . . . 4 ((0g𝑅) ∈ (Base‘(mulGrp‘𝑅)) → (1 (0g𝑅)) = (0g𝑅))
2521, 24syl 17 . . 3 (𝜑 → (1 (0g𝑅)) = (0g𝑅))
26 simplr 769 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ (𝑦 (0g𝑅)) = (0g𝑅)) → 𝑦 ∈ ℕ)
2721ad2antrr 726 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ (𝑦 (0g𝑅)) = (0g𝑅)) → (0g𝑅) ∈ (Base‘(mulGrp‘𝑅)))
28 eqid 2735 . . . . . 6 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
2922, 23, 28mulgnnp1 19113 . . . . 5 ((𝑦 ∈ ℕ ∧ (0g𝑅) ∈ (Base‘(mulGrp‘𝑅))) → ((𝑦 + 1) (0g𝑅)) = ((𝑦 (0g𝑅))(+g‘(mulGrp‘𝑅))(0g𝑅)))
3026, 27, 29syl2anc 584 . . . 4 (((𝜑𝑦 ∈ ℕ) ∧ (𝑦 (0g𝑅)) = (0g𝑅)) → ((𝑦 + 1) (0g𝑅)) = ((𝑦 (0g𝑅))(+g‘(mulGrp‘𝑅))(0g𝑅)))
31 simpr 484 . . . . . 6 (((𝜑𝑦 ∈ ℕ) ∧ (𝑦 (0g𝑅)) = (0g𝑅)) → (𝑦 (0g𝑅)) = (0g𝑅))
3231oveq1d 7446 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ (𝑦 (0g𝑅)) = (0g𝑅)) → ((𝑦 (0g𝑅))(+g‘(mulGrp‘𝑅))(0g𝑅)) = ((0g𝑅)(+g‘(mulGrp‘𝑅))(0g𝑅)))
33 eqid 2735 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
3418, 33mgpplusg 20156 . . . . . . . . . 10 (.r𝑅) = (+g‘(mulGrp‘𝑅))
3534eqcomi 2744 . . . . . . . . 9 (+g‘(mulGrp‘𝑅)) = (.r𝑅)
3614, 35, 15ringrz 20308 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (0g𝑅) ∈ (Base‘𝑅)) → ((0g𝑅)(+g‘(mulGrp‘𝑅))(0g𝑅)) = (0g𝑅))
3711, 17, 36syl2anc 584 . . . . . . 7 (𝜑 → ((0g𝑅)(+g‘(mulGrp‘𝑅))(0g𝑅)) = (0g𝑅))
3837adantr 480 . . . . . 6 ((𝜑𝑦 ∈ ℕ) → ((0g𝑅)(+g‘(mulGrp‘𝑅))(0g𝑅)) = (0g𝑅))
3938adantr 480 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ (𝑦 (0g𝑅)) = (0g𝑅)) → ((0g𝑅)(+g‘(mulGrp‘𝑅))(0g𝑅)) = (0g𝑅))
4032, 39eqtrd 2775 . . . 4 (((𝜑𝑦 ∈ ℕ) ∧ (𝑦 (0g𝑅)) = (0g𝑅)) → ((𝑦 (0g𝑅))(+g‘(mulGrp‘𝑅))(0g𝑅)) = (0g𝑅))
4130, 40eqtrd 2775 . . 3 (((𝜑𝑦 ∈ ℕ) ∧ (𝑦 (0g𝑅)) = (0g𝑅)) → ((𝑦 + 1) (0g𝑅)) = (0g𝑅))
424, 6, 8, 10, 25, 41nnindd 12284 . 2 ((𝜑𝑁 ∈ ℕ) → (𝑁 (0g𝑅)) = (0g𝑅))
432, 42syl 17 1 (𝜑 → (𝑁 (0g𝑅)) = (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  1c1 11154   + caddc 11156  cn 12264  Basecbs 17245  +gcplusg 17298  .rcmulr 17299  0gc0g 17486  Mndcmnd 18760  .gcmg 19098  mulGrpcmgp 20152  Ringcrg 20251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-seq 14040  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-mulg 19099  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253
This theorem is referenced by:  aks6d1c5lem2  42120
  Copyright terms: Public domain W3C validator