Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c5lem0 Structured version   Visualization version   GIF version

Theorem aks6d1c5lem0 42137
Description: Lemma for Claim 5 of Theorem 6.1, G defines a map into the polynomials. (Contributed by metakunt, 5-May-2025.)
Hypotheses
Ref Expression
aks6d1p5.1 (𝜑𝐾 ∈ Field)
aks6d1p5.2 (𝜑𝑃 ∈ ℙ)
aks6d1c5.3 𝑃 = (chr‘𝐾)
aks6d1c5.4 (𝜑𝐴 ∈ ℕ0)
aks6d1c5.5 (𝜑𝐴 < 𝑃)
aks6d1c5.6 𝑋 = (var1𝐾)
aks6d1c5.7 = (.g‘(mulGrp‘(Poly1𝐾)))
aks6d1c5.8 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
Assertion
Ref Expression
aks6d1c5lem0 (𝜑𝐺:(ℕ0m (0...𝐴))⟶(Base‘(Poly1𝐾)))
Distinct variable groups:   𝐴,𝑔,𝑖   𝑔,𝐾,𝑖   𝜑,𝑔,𝑖
Allowed substitution hints:   𝑃(𝑔,𝑖)   (𝑔,𝑖)   𝐺(𝑔,𝑖)   𝑋(𝑔,𝑖)

Proof of Theorem aks6d1c5lem0
StepHypRef Expression
1 eqid 2736 . . . 4 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(mulGrp‘(Poly1𝐾)))
2 aks6d1p5.1 . . . . . . . 8 (𝜑𝐾 ∈ Field)
32fldcrngd 20743 . . . . . . 7 (𝜑𝐾 ∈ CRing)
4 eqid 2736 . . . . . . . 8 (Poly1𝐾) = (Poly1𝐾)
54ply1crng 22201 . . . . . . 7 (𝐾 ∈ CRing → (Poly1𝐾) ∈ CRing)
63, 5syl 17 . . . . . 6 (𝜑 → (Poly1𝐾) ∈ CRing)
7 eqid 2736 . . . . . . 7 (mulGrp‘(Poly1𝐾)) = (mulGrp‘(Poly1𝐾))
87crngmgp 20239 . . . . . 6 ((Poly1𝐾) ∈ CRing → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
96, 8syl 17 . . . . 5 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
109adantr 480 . . . 4 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
11 fzfid 14015 . . . 4 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (0...𝐴) ∈ Fin)
12 aks6d1c5.7 . . . . . 6 = (.g‘(mulGrp‘(Poly1𝐾)))
1310cmnmndd 19823 . . . . . . 7 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
1413adantr 480 . . . . . 6 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
15 nn0ex 12534 . . . . . . . . . . 11 0 ∈ V
1615a1i 11 . . . . . . . . . 10 (𝜑 → ℕ0 ∈ V)
17 ovexd 7467 . . . . . . . . . 10 (𝜑 → (0...𝐴) ∈ V)
1816, 17elmapd 8881 . . . . . . . . 9 (𝜑 → (𝑔 ∈ (ℕ0m (0...𝐴)) ↔ 𝑔:(0...𝐴)⟶ℕ0))
1918biimpd 229 . . . . . . . 8 (𝜑 → (𝑔 ∈ (ℕ0m (0...𝐴)) → 𝑔:(0...𝐴)⟶ℕ0))
2019imp 406 . . . . . . 7 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → 𝑔:(0...𝐴)⟶ℕ0)
2120ffvelcdmda 7103 . . . . . 6 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝑔𝑖) ∈ ℕ0)
226crngringd 20244 . . . . . . . . . . . 12 (𝜑 → (Poly1𝐾) ∈ Ring)
2322ringcmnd 20282 . . . . . . . . . . 11 (𝜑 → (Poly1𝐾) ∈ CMnd)
24 cmnmnd 19816 . . . . . . . . . . 11 ((Poly1𝐾) ∈ CMnd → (Poly1𝐾) ∈ Mnd)
2523, 24syl 17 . . . . . . . . . 10 (𝜑 → (Poly1𝐾) ∈ Mnd)
2625adantr 480 . . . . . . . . 9 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (Poly1𝐾) ∈ Mnd)
2726adantr 480 . . . . . . . 8 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (Poly1𝐾) ∈ Mnd)
283crngringd 20244 . . . . . . . . . . 11 (𝜑𝐾 ∈ Ring)
2928adantr 480 . . . . . . . . . 10 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → 𝐾 ∈ Ring)
3029adantr 480 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → 𝐾 ∈ Ring)
31 aks6d1c5.6 . . . . . . . . . 10 𝑋 = (var1𝐾)
32 eqid 2736 . . . . . . . . . 10 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
3331, 4, 32vr1cl 22220 . . . . . . . . 9 (𝐾 ∈ Ring → 𝑋 ∈ (Base‘(Poly1𝐾)))
3430, 33syl 17 . . . . . . . 8 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → 𝑋 ∈ (Base‘(Poly1𝐾)))
35 simpl 482 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝜑𝑔 ∈ (ℕ0m (0...𝐴))))
36 elfzelz 13565 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝐴) → 𝑖 ∈ ℤ)
3736adantl 481 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → 𝑖 ∈ ℤ)
3835, 37jca 511 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ ℤ))
39 eqid 2736 . . . . . . . . . . . . . 14 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
4039zrhrhm 21523 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
41 zringbas 21465 . . . . . . . . . . . . . 14 ℤ = (Base‘ℤring)
42 eqid 2736 . . . . . . . . . . . . . 14 (Base‘𝐾) = (Base‘𝐾)
4341, 42rhmf 20486 . . . . . . . . . . . . 13 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
4440, 43syl 17 . . . . . . . . . . . 12 (𝐾 ∈ Ring → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
4529, 44syl 17 . . . . . . . . . . 11 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
4645ffvelcdmda 7103 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ ℤ) → ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾))
4738, 46syl 17 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾))
48 eqid 2736 . . . . . . . . . 10 (algSc‘(Poly1𝐾)) = (algSc‘(Poly1𝐾))
494, 48, 42, 32ply1sclcl 22290 . . . . . . . . 9 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
5030, 47, 49syl2anc 584 . . . . . . . 8 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾)))
51 eqid 2736 . . . . . . . . 9 (+g‘(Poly1𝐾)) = (+g‘(Poly1𝐾))
5232, 51mndcl 18756 . . . . . . . 8 (((Poly1𝐾) ∈ Mnd ∧ 𝑋 ∈ (Base‘(Poly1𝐾)) ∧ ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈ (Base‘(Poly1𝐾))) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
5327, 34, 50, 52syl3anc 1372 . . . . . . 7 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
547, 32mgpbas 20143 . . . . . . . 8 (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾)))
5554a1i 11 . . . . . . 7 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾))))
5653, 55eleqtrd 2842 . . . . . 6 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
571, 12, 14, 21, 56mulgnn0cld 19114 . . . . 5 (((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
5857ralrimiva 3145 . . . 4 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → ∀𝑖 ∈ (0...𝐴)((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
591, 10, 11, 58gsummptcl 19986 . . 3 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
6054eqcomi 2745 . . . 4 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(Poly1𝐾))
6160a1i 11 . . 3 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(Poly1𝐾)))
6259, 61eleqtrd 2842 . 2 ((𝜑𝑔 ∈ (ℕ0m (0...𝐴))) → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ (Base‘(Poly1𝐾)))
63 aks6d1c5.8 . 2 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖) (𝑋(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
6462, 63fmptd 7133 1 (𝜑𝐺:(ℕ0m (0...𝐴))⟶(Base‘(Poly1𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3479   class class class wbr 5142  cmpt 5224  wf 6556  cfv 6560  (class class class)co 7432  m cmap 8867  0cc0 11156   < clt 11296  0cn0 12528  cz 12615  ...cfz 13548  cprime 16709  Basecbs 17248  +gcplusg 17298   Σg cgsu 17486  Mndcmnd 18748  .gcmg 19086  CMndccmn 19799  mulGrpcmgp 20138  Ringcrg 20231  CRingccrg 20232   RingHom crh 20470  Fieldcfield 20731  ringczring 21458  ℤRHomczrh 21511  chrcchr 21513  algSccascl 21873  var1cv1 22178  Poly1cpl1 22179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-addf 11235  ax-mulf 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-ghm 19232  df-cntz 19336  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-cring 20234  df-rhm 20473  df-subrng 20547  df-subrg 20571  df-field 20733  df-lmod 20861  df-lss 20931  df-cnfld 21366  df-zring 21459  df-zrh 21515  df-ascl 21876  df-psr 21930  df-mvr 21931  df-mpl 21932  df-opsr 21934  df-psr1 22182  df-vr1 22183  df-ply1 22184
This theorem is referenced by:  aks6d1c5lem3  42139  aks6d1c6lem2  42173  aks6d1c6lem3  42174
  Copyright terms: Public domain W3C validator