Proof of Theorem aks6d1c5lem0
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2736 | . . . 4
⊢
(Base‘(mulGrp‘(Poly1‘𝐾))) =
(Base‘(mulGrp‘(Poly1‘𝐾))) | 
| 2 |  | aks6d1p5.1 | . . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ Field) | 
| 3 | 2 | fldcrngd 20743 | . . . . . . 7
⊢ (𝜑 → 𝐾 ∈ CRing) | 
| 4 |  | eqid 2736 | . . . . . . . 8
⊢
(Poly1‘𝐾) = (Poly1‘𝐾) | 
| 5 | 4 | ply1crng 22201 | . . . . . . 7
⊢ (𝐾 ∈ CRing →
(Poly1‘𝐾)
∈ CRing) | 
| 6 | 3, 5 | syl 17 | . . . . . 6
⊢ (𝜑 →
(Poly1‘𝐾)
∈ CRing) | 
| 7 |  | eqid 2736 | . . . . . . 7
⊢
(mulGrp‘(Poly1‘𝐾)) =
(mulGrp‘(Poly1‘𝐾)) | 
| 8 | 7 | crngmgp 20239 | . . . . . 6
⊢
((Poly1‘𝐾) ∈ CRing →
(mulGrp‘(Poly1‘𝐾)) ∈ CMnd) | 
| 9 | 6, 8 | syl 17 | . . . . 5
⊢ (𝜑 →
(mulGrp‘(Poly1‘𝐾)) ∈ CMnd) | 
| 10 | 9 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) →
(mulGrp‘(Poly1‘𝐾)) ∈ CMnd) | 
| 11 |  | fzfid 14015 | . . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) → (0...𝐴) ∈ Fin) | 
| 12 |  | aks6d1c5.7 | . . . . . 6
⊢  ↑ =
(.g‘(mulGrp‘(Poly1‘𝐾))) | 
| 13 | 10 | cmnmndd 19823 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) →
(mulGrp‘(Poly1‘𝐾)) ∈ Mnd) | 
| 14 | 13 | adantr 480 | . . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) →
(mulGrp‘(Poly1‘𝐾)) ∈ Mnd) | 
| 15 |  | nn0ex 12534 | . . . . . . . . . . 11
⊢
ℕ0 ∈ V | 
| 16 | 15 | a1i 11 | . . . . . . . . . 10
⊢ (𝜑 → ℕ0 ∈
V) | 
| 17 |  | ovexd 7467 | . . . . . . . . . 10
⊢ (𝜑 → (0...𝐴) ∈ V) | 
| 18 | 16, 17 | elmapd 8881 | . . . . . . . . 9
⊢ (𝜑 → (𝑔 ∈ (ℕ0
↑m (0...𝐴))
↔ 𝑔:(0...𝐴)⟶ℕ0)) | 
| 19 | 18 | biimpd 229 | . . . . . . . 8
⊢ (𝜑 → (𝑔 ∈ (ℕ0
↑m (0...𝐴))
→ 𝑔:(0...𝐴)⟶ℕ0)) | 
| 20 | 19 | imp 406 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) → 𝑔:(0...𝐴)⟶ℕ0) | 
| 21 | 20 | ffvelcdmda 7103 | . . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝑔‘𝑖) ∈
ℕ0) | 
| 22 | 6 | crngringd 20244 | . . . . . . . . . . . 12
⊢ (𝜑 →
(Poly1‘𝐾)
∈ Ring) | 
| 23 | 22 | ringcmnd 20282 | . . . . . . . . . . 11
⊢ (𝜑 →
(Poly1‘𝐾)
∈ CMnd) | 
| 24 |  | cmnmnd 19816 | . . . . . . . . . . 11
⊢
((Poly1‘𝐾) ∈ CMnd →
(Poly1‘𝐾)
∈ Mnd) | 
| 25 | 23, 24 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 →
(Poly1‘𝐾)
∈ Mnd) | 
| 26 | 25 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) → (Poly1‘𝐾) ∈ Mnd) | 
| 27 | 26 | adantr 480 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (Poly1‘𝐾) ∈ Mnd) | 
| 28 | 3 | crngringd 20244 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ Ring) | 
| 29 | 28 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) → 𝐾 ∈ Ring) | 
| 30 | 29 | adantr 480 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → 𝐾 ∈ Ring) | 
| 31 |  | aks6d1c5.6 | . . . . . . . . . 10
⊢ 𝑋 = (var1‘𝐾) | 
| 32 |  | eqid 2736 | . . . . . . . . . 10
⊢
(Base‘(Poly1‘𝐾)) =
(Base‘(Poly1‘𝐾)) | 
| 33 | 31, 4, 32 | vr1cl 22220 | . . . . . . . . 9
⊢ (𝐾 ∈ Ring → 𝑋 ∈
(Base‘(Poly1‘𝐾))) | 
| 34 | 30, 33 | syl 17 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → 𝑋 ∈
(Base‘(Poly1‘𝐾))) | 
| 35 |  | simpl 482 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴)))) | 
| 36 |  | elfzelz 13565 | . . . . . . . . . . . 12
⊢ (𝑖 ∈ (0...𝐴) → 𝑖 ∈ ℤ) | 
| 37 | 36 | adantl 481 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → 𝑖 ∈ ℤ) | 
| 38 | 35, 37 | jca 511 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ ℤ)) | 
| 39 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢
(ℤRHom‘𝐾) = (ℤRHom‘𝐾) | 
| 40 | 39 | zrhrhm 21523 | . . . . . . . . . . . . 13
⊢ (𝐾 ∈ Ring →
(ℤRHom‘𝐾)
∈ (ℤring RingHom 𝐾)) | 
| 41 |  | zringbas 21465 | . . . . . . . . . . . . . 14
⊢ ℤ =
(Base‘ℤring) | 
| 42 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 43 | 41, 42 | rhmf 20486 | . . . . . . . . . . . . 13
⊢
((ℤRHom‘𝐾) ∈ (ℤring RingHom
𝐾) →
(ℤRHom‘𝐾):ℤ⟶(Base‘𝐾)) | 
| 44 | 40, 43 | syl 17 | . . . . . . . . . . . 12
⊢ (𝐾 ∈ Ring →
(ℤRHom‘𝐾):ℤ⟶(Base‘𝐾)) | 
| 45 | 29, 44 | syl 17 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾)) | 
| 46 | 45 | ffvelcdmda 7103 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ ℤ) →
((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾)) | 
| 47 | 38, 46 | syl 17 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾)) | 
| 48 |  | eqid 2736 | . . . . . . . . . 10
⊢
(algSc‘(Poly1‘𝐾)) =
(algSc‘(Poly1‘𝐾)) | 
| 49 | 4, 48, 42, 32 | ply1sclcl 22290 | . . . . . . . . 9
⊢ ((𝐾 ∈ Ring ∧
((ℤRHom‘𝐾)‘𝑖) ∈ (Base‘𝐾)) →
((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈
(Base‘(Poly1‘𝐾))) | 
| 50 | 30, 47, 49 | syl2anc 584 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) →
((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈
(Base‘(Poly1‘𝐾))) | 
| 51 |  | eqid 2736 | . . . . . . . . 9
⊢
(+g‘(Poly1‘𝐾)) =
(+g‘(Poly1‘𝐾)) | 
| 52 | 32, 51 | mndcl 18756 | . . . . . . . 8
⊢
(((Poly1‘𝐾) ∈ Mnd ∧ 𝑋 ∈
(Base‘(Poly1‘𝐾)) ∧
((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖)) ∈
(Base‘(Poly1‘𝐾))) → (𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈
(Base‘(Poly1‘𝐾))) | 
| 53 | 27, 34, 50, 52 | syl3anc 1372 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈
(Base‘(Poly1‘𝐾))) | 
| 54 | 7, 32 | mgpbas 20143 | . . . . . . . 8
⊢
(Base‘(Poly1‘𝐾)) =
(Base‘(mulGrp‘(Poly1‘𝐾))) | 
| 55 | 54 | a1i 11 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) →
(Base‘(Poly1‘𝐾)) =
(Base‘(mulGrp‘(Poly1‘𝐾)))) | 
| 56 | 53, 55 | eleqtrd 2842 | . . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → (𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈
(Base‘(mulGrp‘(Poly1‘𝐾)))) | 
| 57 | 1, 12, 14, 21, 56 | mulgnn0cld 19114 | . . . . 5
⊢ (((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑖 ∈ (0...𝐴)) → ((𝑔‘𝑖) ↑ (𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈
(Base‘(mulGrp‘(Poly1‘𝐾)))) | 
| 58 | 57 | ralrimiva 3145 | . . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) → ∀𝑖 ∈ (0...𝐴)((𝑔‘𝑖) ↑ (𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈
(Base‘(mulGrp‘(Poly1‘𝐾)))) | 
| 59 | 1, 10, 11, 58 | gsummptcl 19986 | . . 3
⊢ ((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) →
((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖) ↑ (𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈
(Base‘(mulGrp‘(Poly1‘𝐾)))) | 
| 60 | 54 | eqcomi 2745 | . . . 4
⊢
(Base‘(mulGrp‘(Poly1‘𝐾))) =
(Base‘(Poly1‘𝐾)) | 
| 61 | 60 | a1i 11 | . . 3
⊢ ((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) →
(Base‘(mulGrp‘(Poly1‘𝐾))) =
(Base‘(Poly1‘𝐾))) | 
| 62 | 59, 61 | eleqtrd 2842 | . 2
⊢ ((𝜑 ∧ 𝑔 ∈ (ℕ0
↑m (0...𝐴))) →
((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖) ↑ (𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈
(Base‘(Poly1‘𝐾))) | 
| 63 |  | aks6d1c5.8 | . 2
⊢ 𝐺 = (𝑔 ∈ (ℕ0
↑m (0...𝐴))
↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖) ↑ (𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) | 
| 64 | 62, 63 | fmptd 7133 | 1
⊢ (𝜑 → 𝐺:(ℕ0 ↑m
(0...𝐴))⟶(Base‘(Poly1‘𝐾))) |