Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  amgm4d Structured version   Visualization version   GIF version

Theorem amgm4d 40039
Description: Arithmetic-geometric mean inequality for 𝑛 = 4. (Contributed by Stanislas Polu, 11-Sep-2020.)
Hypotheses
Ref Expression
amgm4d.0 (𝜑𝐴 ∈ ℝ+)
amgm4d.1 (𝜑𝐵 ∈ ℝ+)
amgm4d.2 (𝜑𝐶 ∈ ℝ+)
amgm4d.3 (𝜑𝐷 ∈ ℝ+)
Assertion
Ref Expression
amgm4d (𝜑 → ((𝐴 · (𝐵 · (𝐶 · 𝐷)))↑𝑐(1 / 4)) ≤ ((𝐴 + (𝐵 + (𝐶 + 𝐷))) / 4))

Proof of Theorem amgm4d
StepHypRef Expression
1 eqid 2795 . . 3 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
2 fzofi 13192 . . . 4 (0..^4) ∈ Fin
32a1i 11 . . 3 (𝜑 → (0..^4) ∈ Fin)
4 4nn 11568 . . . . 5 4 ∈ ℕ
5 lbfzo0 12927 . . . . 5 (0 ∈ (0..^4) ↔ 4 ∈ ℕ)
64, 5mpbir 232 . . . 4 0 ∈ (0..^4)
7 ne0i 4220 . . . 4 (0 ∈ (0..^4) → (0..^4) ≠ ∅)
86, 7mp1i 13 . . 3 (𝜑 → (0..^4) ≠ ∅)
9 amgm4d.0 . . . . . 6 (𝜑𝐴 ∈ ℝ+)
10 amgm4d.1 . . . . . 6 (𝜑𝐵 ∈ ℝ+)
11 amgm4d.2 . . . . . 6 (𝜑𝐶 ∈ ℝ+)
12 amgm4d.3 . . . . . 6 (𝜑𝐷 ∈ ℝ+)
139, 10, 11, 12s4cld 14071 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩ ∈ Word ℝ+)
14 wrdf 13712 . . . . 5 (⟨“𝐴𝐵𝐶𝐷”⟩ ∈ Word ℝ+ → ⟨“𝐴𝐵𝐶𝐷”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷”⟩))⟶ℝ+)
1513, 14syl 17 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷”⟩))⟶ℝ+)
16 s4len 14097 . . . . . . 7 (♯‘⟨“𝐴𝐵𝐶𝐷”⟩) = 4
1716a1i 11 . . . . . 6 (𝜑 → (♯‘⟨“𝐴𝐵𝐶𝐷”⟩) = 4)
1817oveq2d 7032 . . . . 5 (𝜑 → (0..^(♯‘⟨“𝐴𝐵𝐶𝐷”⟩)) = (0..^4))
1918feq2d 6368 . . . 4 (𝜑 → (⟨“𝐴𝐵𝐶𝐷”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷”⟩))⟶ℝ+ ↔ ⟨“𝐴𝐵𝐶𝐷”⟩:(0..^4)⟶ℝ+))
2015, 19mpbid 233 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩:(0..^4)⟶ℝ+)
211, 3, 8, 20amgmlem 25249 . 2 (𝜑 → (((mulGrp‘ℂfld) Σg ⟨“𝐴𝐵𝐶𝐷”⟩)↑𝑐(1 / (♯‘(0..^4)))) ≤ ((ℂfld Σg ⟨“𝐴𝐵𝐶𝐷”⟩) / (♯‘(0..^4))))
22 cnring 20249 . . . . 5 fld ∈ Ring
231ringmgp 18993 . . . . 5 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
2422, 23mp1i 13 . . . 4 (𝜑 → (mulGrp‘ℂfld) ∈ Mnd)
259rpcnd 12283 . . . . 5 (𝜑𝐴 ∈ ℂ)
2610rpcnd 12283 . . . . 5 (𝜑𝐵 ∈ ℂ)
2711rpcnd 12283 . . . . . 6 (𝜑𝐶 ∈ ℂ)
2812rpcnd 12283 . . . . . 6 (𝜑𝐷 ∈ ℂ)
2927, 28jca 512 . . . . 5 (𝜑 → (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ))
3025, 26, 29jca32 516 . . . 4 (𝜑 → (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ))))
31 cnfldbas 20231 . . . . . 6 ℂ = (Base‘ℂfld)
321, 31mgpbas 18935 . . . . 5 ℂ = (Base‘(mulGrp‘ℂfld))
33 cnfldmul 20233 . . . . . 6 · = (.r‘ℂfld)
341, 33mgpplusg 18933 . . . . 5 · = (+g‘(mulGrp‘ℂfld))
3532, 34gsumws4 40036 . . . 4 (((mulGrp‘ℂfld) ∈ Mnd ∧ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)))) → ((mulGrp‘ℂfld) Σg ⟨“𝐴𝐵𝐶𝐷”⟩) = (𝐴 · (𝐵 · (𝐶 · 𝐷))))
3624, 30, 35syl2anc 584 . . 3 (𝜑 → ((mulGrp‘ℂfld) Σg ⟨“𝐴𝐵𝐶𝐷”⟩) = (𝐴 · (𝐵 · (𝐶 · 𝐷))))
37 4nn0 11764 . . . . 5 4 ∈ ℕ0
38 hashfzo0 13639 . . . . 5 (4 ∈ ℕ0 → (♯‘(0..^4)) = 4)
3937, 38mp1i 13 . . . 4 (𝜑 → (♯‘(0..^4)) = 4)
4039oveq2d 7032 . . 3 (𝜑 → (1 / (♯‘(0..^4))) = (1 / 4))
4136, 40oveq12d 7034 . 2 (𝜑 → (((mulGrp‘ℂfld) Σg ⟨“𝐴𝐵𝐶𝐷”⟩)↑𝑐(1 / (♯‘(0..^4)))) = ((𝐴 · (𝐵 · (𝐶 · 𝐷)))↑𝑐(1 / 4)))
42 ringmnd 18996 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
4322, 42mp1i 13 . . . 4 (𝜑 → ℂfld ∈ Mnd)
44 cnfldadd 20232 . . . . 5 + = (+g‘ℂfld)
4531, 44gsumws4 40036 . . . 4 ((ℂfld ∈ Mnd ∧ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)))) → (ℂfld Σg ⟨“𝐴𝐵𝐶𝐷”⟩) = (𝐴 + (𝐵 + (𝐶 + 𝐷))))
4643, 30, 45syl2anc 584 . . 3 (𝜑 → (ℂfld Σg ⟨“𝐴𝐵𝐶𝐷”⟩) = (𝐴 + (𝐵 + (𝐶 + 𝐷))))
4746, 39oveq12d 7034 . 2 (𝜑 → ((ℂfld Σg ⟨“𝐴𝐵𝐶𝐷”⟩) / (♯‘(0..^4))) = ((𝐴 + (𝐵 + (𝐶 + 𝐷))) / 4))
4821, 41, 473brtr3d 4993 1 (𝜑 → ((𝐴 · (𝐵 · (𝐶 · 𝐷)))↑𝑐(1 / 4)) ≤ ((𝐴 + (𝐵 + (𝐶 + 𝐷))) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1522  wcel 2081  wne 2984  c0 4211   class class class wbr 4962  wf 6221  cfv 6225  (class class class)co 7016  Fincfn 8357  cc 10381  0cc0 10383  1c1 10384   + caddc 10386   · cmul 10388  cle 10522   / cdiv 11145  cn 11486  4c4 11542  0cn0 11745  +crp 12239  ..^cfzo 12883  chash 13540  Word cword 13707  ⟨“cs4 14041   Σg cgsu 16543  Mndcmnd 17733  mulGrpcmgp 18929  Ringcrg 18987  fldccnfld 20227  𝑐ccxp 24820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-tpos 7743  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ioc 12593  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-fl 13012  df-mod 13088  df-seq 13220  df-exp 13280  df-fac 13484  df-bc 13513  df-hash 13541  df-word 13708  df-concat 13769  df-s1 13794  df-s2 14046  df-s3 14047  df-s4 14048  df-shft 14260  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-limsup 14662  df-clim 14679  df-rlim 14680  df-sum 14877  df-ef 15254  df-sin 15256  df-cos 15257  df-pi 15259  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-rest 16525  df-topn 16526  df-0g 16544  df-gsum 16545  df-topgen 16546  df-pt 16547  df-prds 16550  df-xrs 16604  df-qtop 16609  df-imas 16610  df-xps 16612  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-mhm 17774  df-submnd 17775  df-grp 17864  df-minusg 17865  df-mulg 17982  df-subg 18030  df-ghm 18097  df-gim 18140  df-cntz 18188  df-cmn 18635  df-abl 18636  df-mgp 18930  df-ur 18942  df-ring 18989  df-cring 18990  df-oppr 19063  df-dvdsr 19081  df-unit 19082  df-invr 19112  df-dvr 19123  df-drng 19194  df-subrg 19223  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-refld 20431  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-perf 21429  df-cn 21519  df-cnp 21520  df-haus 21607  df-cmp 21679  df-tx 21854  df-hmeo 22047  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-xms 22613  df-ms 22614  df-tms 22615  df-cncf 23169  df-limc 24147  df-dv 24148  df-log 24821  df-cxp 24822
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator