Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  amgm4d Structured version   Visualization version   GIF version

Theorem amgm4d 44162
Description: Arithmetic-geometric mean inequality for 𝑛 = 4. (Contributed by Stanislas Polu, 11-Sep-2020.)
Hypotheses
Ref Expression
amgm4d.0 (𝜑𝐴 ∈ ℝ+)
amgm4d.1 (𝜑𝐵 ∈ ℝ+)
amgm4d.2 (𝜑𝐶 ∈ ℝ+)
amgm4d.3 (𝜑𝐷 ∈ ℝ+)
Assertion
Ref Expression
amgm4d (𝜑 → ((𝐴 · (𝐵 · (𝐶 · 𝐷)))↑𝑐(1 / 4)) ≤ ((𝐴 + (𝐵 + (𝐶 + 𝐷))) / 4))

Proof of Theorem amgm4d
StepHypRef Expression
1 eqid 2740 . . 3 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
2 fzofi 14025 . . . 4 (0..^4) ∈ Fin
32a1i 11 . . 3 (𝜑 → (0..^4) ∈ Fin)
4 4nn 12376 . . . . 5 4 ∈ ℕ
5 lbfzo0 13756 . . . . 5 (0 ∈ (0..^4) ↔ 4 ∈ ℕ)
64, 5mpbir 231 . . . 4 0 ∈ (0..^4)
7 ne0i 4364 . . . 4 (0 ∈ (0..^4) → (0..^4) ≠ ∅)
86, 7mp1i 13 . . 3 (𝜑 → (0..^4) ≠ ∅)
9 amgm4d.0 . . . . . 6 (𝜑𝐴 ∈ ℝ+)
10 amgm4d.1 . . . . . 6 (𝜑𝐵 ∈ ℝ+)
11 amgm4d.2 . . . . . 6 (𝜑𝐶 ∈ ℝ+)
12 amgm4d.3 . . . . . 6 (𝜑𝐷 ∈ ℝ+)
139, 10, 11, 12s4cld 14922 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩ ∈ Word ℝ+)
14 wrdf 14567 . . . . 5 (⟨“𝐴𝐵𝐶𝐷”⟩ ∈ Word ℝ+ → ⟨“𝐴𝐵𝐶𝐷”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷”⟩))⟶ℝ+)
1513, 14syl 17 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷”⟩))⟶ℝ+)
16 s4len 14948 . . . . . . 7 (♯‘⟨“𝐴𝐵𝐶𝐷”⟩) = 4
1716a1i 11 . . . . . 6 (𝜑 → (♯‘⟨“𝐴𝐵𝐶𝐷”⟩) = 4)
1817oveq2d 7464 . . . . 5 (𝜑 → (0..^(♯‘⟨“𝐴𝐵𝐶𝐷”⟩)) = (0..^4))
1918feq2d 6733 . . . 4 (𝜑 → (⟨“𝐴𝐵𝐶𝐷”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷”⟩))⟶ℝ+ ↔ ⟨“𝐴𝐵𝐶𝐷”⟩:(0..^4)⟶ℝ+))
2015, 19mpbid 232 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩:(0..^4)⟶ℝ+)
211, 3, 8, 20amgmlem 27051 . 2 (𝜑 → (((mulGrp‘ℂfld) Σg ⟨“𝐴𝐵𝐶𝐷”⟩)↑𝑐(1 / (♯‘(0..^4)))) ≤ ((ℂfld Σg ⟨“𝐴𝐵𝐶𝐷”⟩) / (♯‘(0..^4))))
22 cnring 21426 . . . . 5 fld ∈ Ring
231ringmgp 20266 . . . . 5 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
2422, 23mp1i 13 . . . 4 (𝜑 → (mulGrp‘ℂfld) ∈ Mnd)
259rpcnd 13101 . . . . 5 (𝜑𝐴 ∈ ℂ)
2610rpcnd 13101 . . . . 5 (𝜑𝐵 ∈ ℂ)
2711rpcnd 13101 . . . . . 6 (𝜑𝐶 ∈ ℂ)
2812rpcnd 13101 . . . . . 6 (𝜑𝐷 ∈ ℂ)
2927, 28jca 511 . . . . 5 (𝜑 → (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ))
3025, 26, 29jca32 515 . . . 4 (𝜑 → (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ))))
31 cnfldbas 21391 . . . . . 6 ℂ = (Base‘ℂfld)
321, 31mgpbas 20167 . . . . 5 ℂ = (Base‘(mulGrp‘ℂfld))
33 cnfldmul 21395 . . . . . 6 · = (.r‘ℂfld)
341, 33mgpplusg 20165 . . . . 5 · = (+g‘(mulGrp‘ℂfld))
3532, 34gsumws4 44159 . . . 4 (((mulGrp‘ℂfld) ∈ Mnd ∧ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)))) → ((mulGrp‘ℂfld) Σg ⟨“𝐴𝐵𝐶𝐷”⟩) = (𝐴 · (𝐵 · (𝐶 · 𝐷))))
3624, 30, 35syl2anc 583 . . 3 (𝜑 → ((mulGrp‘ℂfld) Σg ⟨“𝐴𝐵𝐶𝐷”⟩) = (𝐴 · (𝐵 · (𝐶 · 𝐷))))
37 4nn0 12572 . . . . 5 4 ∈ ℕ0
38 hashfzo0 14479 . . . . 5 (4 ∈ ℕ0 → (♯‘(0..^4)) = 4)
3937, 38mp1i 13 . . . 4 (𝜑 → (♯‘(0..^4)) = 4)
4039oveq2d 7464 . . 3 (𝜑 → (1 / (♯‘(0..^4))) = (1 / 4))
4136, 40oveq12d 7466 . 2 (𝜑 → (((mulGrp‘ℂfld) Σg ⟨“𝐴𝐵𝐶𝐷”⟩)↑𝑐(1 / (♯‘(0..^4)))) = ((𝐴 · (𝐵 · (𝐶 · 𝐷)))↑𝑐(1 / 4)))
42 ringmnd 20270 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
4322, 42mp1i 13 . . . 4 (𝜑 → ℂfld ∈ Mnd)
44 cnfldadd 21393 . . . . 5 + = (+g‘ℂfld)
4531, 44gsumws4 44159 . . . 4 ((ℂfld ∈ Mnd ∧ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)))) → (ℂfld Σg ⟨“𝐴𝐵𝐶𝐷”⟩) = (𝐴 + (𝐵 + (𝐶 + 𝐷))))
4643, 30, 45syl2anc 583 . . 3 (𝜑 → (ℂfld Σg ⟨“𝐴𝐵𝐶𝐷”⟩) = (𝐴 + (𝐵 + (𝐶 + 𝐷))))
4746, 39oveq12d 7466 . 2 (𝜑 → ((ℂfld Σg ⟨“𝐴𝐵𝐶𝐷”⟩) / (♯‘(0..^4))) = ((𝐴 + (𝐵 + (𝐶 + 𝐷))) / 4))
4821, 41, 473brtr3d 5197 1 (𝜑 → ((𝐴 · (𝐵 · (𝐶 · 𝐷)))↑𝑐(1 / 4)) ≤ ((𝐴 + (𝐵 + (𝐶 + 𝐷))) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  c0 4352   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cle 11325   / cdiv 11947  cn 12293  4c4 12350  0cn0 12553  +crp 13057  ..^cfzo 13711  chash 14379  Word cword 14562  ⟨“cs4 14892   Σg cgsu 17500  Mndcmnd 18772  mulGrpcmgp 20161  Ringcrg 20260  fldccnfld 21387  𝑐ccxp 26615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-s4 14899  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-mulg 19108  df-subg 19163  df-ghm 19253  df-gim 19299  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-subrng 20572  df-subrg 20597  df-drng 20753  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-refld 21646  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-cxp 26617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator