Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > amgm4d | Structured version Visualization version GIF version |
Description: Arithmetic-geometric mean inequality for 𝑛 = 4. (Contributed by Stanislas Polu, 11-Sep-2020.) |
Ref | Expression |
---|---|
amgm4d.0 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
amgm4d.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
amgm4d.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
amgm4d.3 | ⊢ (𝜑 → 𝐷 ∈ ℝ+) |
Ref | Expression |
---|---|
amgm4d | ⊢ (𝜑 → ((𝐴 · (𝐵 · (𝐶 · 𝐷)))↑𝑐(1 / 4)) ≤ ((𝐴 + (𝐵 + (𝐶 + 𝐷))) / 4)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
2 | fzofi 13799 | . . . 4 ⊢ (0..^4) ∈ Fin | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → (0..^4) ∈ Fin) |
4 | 4nn 12161 | . . . . 5 ⊢ 4 ∈ ℕ | |
5 | lbfzo0 13532 | . . . . 5 ⊢ (0 ∈ (0..^4) ↔ 4 ∈ ℕ) | |
6 | 4, 5 | mpbir 230 | . . . 4 ⊢ 0 ∈ (0..^4) |
7 | ne0i 4285 | . . . 4 ⊢ (0 ∈ (0..^4) → (0..^4) ≠ ∅) | |
8 | 6, 7 | mp1i 13 | . . 3 ⊢ (𝜑 → (0..^4) ≠ ∅) |
9 | amgm4d.0 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
10 | amgm4d.1 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
11 | amgm4d.2 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
12 | amgm4d.3 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ℝ+) | |
13 | 9, 10, 11, 12 | s4cld 14685 | . . . . 5 ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷”〉 ∈ Word ℝ+) |
14 | wrdf 14326 | . . . . 5 ⊢ (〈“𝐴𝐵𝐶𝐷”〉 ∈ Word ℝ+ → 〈“𝐴𝐵𝐶𝐷”〉:(0..^(♯‘〈“𝐴𝐵𝐶𝐷”〉))⟶ℝ+) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷”〉:(0..^(♯‘〈“𝐴𝐵𝐶𝐷”〉))⟶ℝ+) |
16 | s4len 14711 | . . . . . . 7 ⊢ (♯‘〈“𝐴𝐵𝐶𝐷”〉) = 4 | |
17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (♯‘〈“𝐴𝐵𝐶𝐷”〉) = 4) |
18 | 17 | oveq2d 7357 | . . . . 5 ⊢ (𝜑 → (0..^(♯‘〈“𝐴𝐵𝐶𝐷”〉)) = (0..^4)) |
19 | 18 | feq2d 6641 | . . . 4 ⊢ (𝜑 → (〈“𝐴𝐵𝐶𝐷”〉:(0..^(♯‘〈“𝐴𝐵𝐶𝐷”〉))⟶ℝ+ ↔ 〈“𝐴𝐵𝐶𝐷”〉:(0..^4)⟶ℝ+)) |
20 | 15, 19 | mpbid 231 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷”〉:(0..^4)⟶ℝ+) |
21 | 1, 3, 8, 20 | amgmlem 26244 | . 2 ⊢ (𝜑 → (((mulGrp‘ℂfld) Σg 〈“𝐴𝐵𝐶𝐷”〉)↑𝑐(1 / (♯‘(0..^4)))) ≤ ((ℂfld Σg 〈“𝐴𝐵𝐶𝐷”〉) / (♯‘(0..^4)))) |
22 | cnring 20725 | . . . . 5 ⊢ ℂfld ∈ Ring | |
23 | 1 | ringmgp 19883 | . . . . 5 ⊢ (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd) |
24 | 22, 23 | mp1i 13 | . . . 4 ⊢ (𝜑 → (mulGrp‘ℂfld) ∈ Mnd) |
25 | 9 | rpcnd 12879 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
26 | 10 | rpcnd 12879 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
27 | 11 | rpcnd 12879 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
28 | 12 | rpcnd 12879 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
29 | 27, 28 | jca 513 | . . . . 5 ⊢ (𝜑 → (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) |
30 | 25, 26, 29 | jca32 517 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)))) |
31 | cnfldbas 20706 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
32 | 1, 31 | mgpbas 19820 | . . . . 5 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
33 | cnfldmul 20708 | . . . . . 6 ⊢ · = (.r‘ℂfld) | |
34 | 1, 33 | mgpplusg 19818 | . . . . 5 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
35 | 32, 34 | gsumws4 42181 | . . . 4 ⊢ (((mulGrp‘ℂfld) ∈ Mnd ∧ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)))) → ((mulGrp‘ℂfld) Σg 〈“𝐴𝐵𝐶𝐷”〉) = (𝐴 · (𝐵 · (𝐶 · 𝐷)))) |
36 | 24, 30, 35 | syl2anc 585 | . . 3 ⊢ (𝜑 → ((mulGrp‘ℂfld) Σg 〈“𝐴𝐵𝐶𝐷”〉) = (𝐴 · (𝐵 · (𝐶 · 𝐷)))) |
37 | 4nn0 12357 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
38 | hashfzo0 14249 | . . . . 5 ⊢ (4 ∈ ℕ0 → (♯‘(0..^4)) = 4) | |
39 | 37, 38 | mp1i 13 | . . . 4 ⊢ (𝜑 → (♯‘(0..^4)) = 4) |
40 | 39 | oveq2d 7357 | . . 3 ⊢ (𝜑 → (1 / (♯‘(0..^4))) = (1 / 4)) |
41 | 36, 40 | oveq12d 7359 | . 2 ⊢ (𝜑 → (((mulGrp‘ℂfld) Σg 〈“𝐴𝐵𝐶𝐷”〉)↑𝑐(1 / (♯‘(0..^4)))) = ((𝐴 · (𝐵 · (𝐶 · 𝐷)))↑𝑐(1 / 4))) |
42 | ringmnd 19887 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Mnd) | |
43 | 22, 42 | mp1i 13 | . . . 4 ⊢ (𝜑 → ℂfld ∈ Mnd) |
44 | cnfldadd 20707 | . . . . 5 ⊢ + = (+g‘ℂfld) | |
45 | 31, 44 | gsumws4 42181 | . . . 4 ⊢ ((ℂfld ∈ Mnd ∧ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)))) → (ℂfld Σg 〈“𝐴𝐵𝐶𝐷”〉) = (𝐴 + (𝐵 + (𝐶 + 𝐷)))) |
46 | 43, 30, 45 | syl2anc 585 | . . 3 ⊢ (𝜑 → (ℂfld Σg 〈“𝐴𝐵𝐶𝐷”〉) = (𝐴 + (𝐵 + (𝐶 + 𝐷)))) |
47 | 46, 39 | oveq12d 7359 | . 2 ⊢ (𝜑 → ((ℂfld Σg 〈“𝐴𝐵𝐶𝐷”〉) / (♯‘(0..^4))) = ((𝐴 + (𝐵 + (𝐶 + 𝐷))) / 4)) |
48 | 21, 41, 47 | 3brtr3d 5127 | 1 ⊢ (𝜑 → ((𝐴 · (𝐵 · (𝐶 · 𝐷)))↑𝑐(1 / 4)) ≤ ((𝐴 + (𝐵 + (𝐶 + 𝐷))) / 4)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ∅c0 4273 class class class wbr 5096 ⟶wf 6479 ‘cfv 6483 (class class class)co 7341 Fincfn 8808 ℂcc 10974 0cc0 10976 1c1 10977 + caddc 10979 · cmul 10981 ≤ cle 11115 / cdiv 11737 ℕcn 12078 4c4 12135 ℕ0cn0 12338 ℝ+crp 12835 ..^cfzo 13487 ♯chash 14149 Word cword 14321 〈“cs4 14655 Σg cgsu 17248 Mndcmnd 18482 mulGrpcmgp 19814 Ringcrg 19877 ℂfldccnfld 20702 ↑𝑐ccxp 25816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-inf2 9502 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-pre-sup 11054 ax-addf 11055 ax-mulf 11056 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4857 df-int 4899 df-iun 4947 df-iin 4948 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-se 5580 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-isom 6492 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7599 df-om 7785 df-1st 7903 df-2nd 7904 df-supp 8052 df-tpos 8116 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-2o 8372 df-er 8573 df-map 8692 df-pm 8693 df-ixp 8761 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-fsupp 9231 df-fi 9272 df-sup 9303 df-inf 9304 df-oi 9371 df-card 9800 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-7 12146 df-8 12147 df-9 12148 df-n0 12339 df-z 12425 df-dec 12543 df-uz 12688 df-q 12794 df-rp 12836 df-xneg 12953 df-xadd 12954 df-xmul 12955 df-ioo 13188 df-ioc 13189 df-ico 13190 df-icc 13191 df-fz 13345 df-fzo 13488 df-fl 13617 df-mod 13695 df-seq 13827 df-exp 13888 df-fac 14093 df-bc 14122 df-hash 14150 df-word 14322 df-concat 14378 df-s1 14403 df-s2 14660 df-s3 14661 df-s4 14662 df-shft 14877 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-limsup 15279 df-clim 15296 df-rlim 15297 df-sum 15497 df-ef 15876 df-sin 15878 df-cos 15879 df-pi 15881 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-starv 17074 df-sca 17075 df-vsca 17076 df-ip 17077 df-tset 17078 df-ple 17079 df-ds 17081 df-unif 17082 df-hom 17083 df-cco 17084 df-rest 17230 df-topn 17231 df-0g 17249 df-gsum 17250 df-topgen 17251 df-pt 17252 df-prds 17255 df-xrs 17310 df-qtop 17315 df-imas 17316 df-xps 17318 df-mre 17392 df-mrc 17393 df-acs 17395 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-mhm 18527 df-submnd 18528 df-grp 18676 df-minusg 18677 df-mulg 18797 df-subg 18848 df-ghm 18928 df-gim 18971 df-cntz 19019 df-cmn 19483 df-abl 19484 df-mgp 19815 df-ur 19832 df-ring 19879 df-cring 19880 df-oppr 19956 df-dvdsr 19977 df-unit 19978 df-invr 20008 df-dvr 20019 df-drng 20094 df-subrg 20126 df-psmet 20694 df-xmet 20695 df-met 20696 df-bl 20697 df-mopn 20698 df-fbas 20699 df-fg 20700 df-cnfld 20703 df-refld 20915 df-top 22148 df-topon 22165 df-topsp 22187 df-bases 22201 df-cld 22275 df-ntr 22276 df-cls 22277 df-nei 22354 df-lp 22392 df-perf 22393 df-cn 22483 df-cnp 22484 df-haus 22571 df-cmp 22643 df-tx 22818 df-hmeo 23011 df-fil 23102 df-fm 23194 df-flim 23195 df-flf 23196 df-xms 23578 df-ms 23579 df-tms 23580 df-cncf 24146 df-limc 25135 df-dv 25136 df-log 25817 df-cxp 25818 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |