Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  amgm4d Structured version   Visualization version   GIF version

Theorem amgm4d 44357
Description: Arithmetic-geometric mean inequality for 𝑛 = 4. (Contributed by Stanislas Polu, 11-Sep-2020.)
Hypotheses
Ref Expression
amgm4d.0 (𝜑𝐴 ∈ ℝ+)
amgm4d.1 (𝜑𝐵 ∈ ℝ+)
amgm4d.2 (𝜑𝐶 ∈ ℝ+)
amgm4d.3 (𝜑𝐷 ∈ ℝ+)
Assertion
Ref Expression
amgm4d (𝜑 → ((𝐴 · (𝐵 · (𝐶 · 𝐷)))↑𝑐(1 / 4)) ≤ ((𝐴 + (𝐵 + (𝐶 + 𝐷))) / 4))

Proof of Theorem amgm4d
StepHypRef Expression
1 eqid 2733 . . 3 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
2 fzofi 13888 . . . 4 (0..^4) ∈ Fin
32a1i 11 . . 3 (𝜑 → (0..^4) ∈ Fin)
4 4nn 12219 . . . . 5 4 ∈ ℕ
5 lbfzo0 13606 . . . . 5 (0 ∈ (0..^4) ↔ 4 ∈ ℕ)
64, 5mpbir 231 . . . 4 0 ∈ (0..^4)
7 ne0i 4290 . . . 4 (0 ∈ (0..^4) → (0..^4) ≠ ∅)
86, 7mp1i 13 . . 3 (𝜑 → (0..^4) ≠ ∅)
9 amgm4d.0 . . . . . 6 (𝜑𝐴 ∈ ℝ+)
10 amgm4d.1 . . . . . 6 (𝜑𝐵 ∈ ℝ+)
11 amgm4d.2 . . . . . 6 (𝜑𝐶 ∈ ℝ+)
12 amgm4d.3 . . . . . 6 (𝜑𝐷 ∈ ℝ+)
139, 10, 11, 12s4cld 14787 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩ ∈ Word ℝ+)
14 wrdf 14432 . . . . 5 (⟨“𝐴𝐵𝐶𝐷”⟩ ∈ Word ℝ+ → ⟨“𝐴𝐵𝐶𝐷”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷”⟩))⟶ℝ+)
1513, 14syl 17 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷”⟩))⟶ℝ+)
16 s4len 14813 . . . . . . 7 (♯‘⟨“𝐴𝐵𝐶𝐷”⟩) = 4
1716a1i 11 . . . . . 6 (𝜑 → (♯‘⟨“𝐴𝐵𝐶𝐷”⟩) = 4)
1817oveq2d 7371 . . . . 5 (𝜑 → (0..^(♯‘⟨“𝐴𝐵𝐶𝐷”⟩)) = (0..^4))
1918feq2d 6643 . . . 4 (𝜑 → (⟨“𝐴𝐵𝐶𝐷”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶𝐷”⟩))⟶ℝ+ ↔ ⟨“𝐴𝐵𝐶𝐷”⟩:(0..^4)⟶ℝ+))
2015, 19mpbid 232 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩:(0..^4)⟶ℝ+)
211, 3, 8, 20amgmlem 26947 . 2 (𝜑 → (((mulGrp‘ℂfld) Σg ⟨“𝐴𝐵𝐶𝐷”⟩)↑𝑐(1 / (♯‘(0..^4)))) ≤ ((ℂfld Σg ⟨“𝐴𝐵𝐶𝐷”⟩) / (♯‘(0..^4))))
22 cnring 21336 . . . . 5 fld ∈ Ring
231ringmgp 20165 . . . . 5 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
2422, 23mp1i 13 . . . 4 (𝜑 → (mulGrp‘ℂfld) ∈ Mnd)
259rpcnd 12942 . . . . 5 (𝜑𝐴 ∈ ℂ)
2610rpcnd 12942 . . . . 5 (𝜑𝐵 ∈ ℂ)
2711rpcnd 12942 . . . . . 6 (𝜑𝐶 ∈ ℂ)
2812rpcnd 12942 . . . . . 6 (𝜑𝐷 ∈ ℂ)
2927, 28jca 511 . . . . 5 (𝜑 → (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ))
3025, 26, 29jca32 515 . . . 4 (𝜑 → (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ))))
31 cnfldbas 21304 . . . . . 6 ℂ = (Base‘ℂfld)
321, 31mgpbas 20071 . . . . 5 ℂ = (Base‘(mulGrp‘ℂfld))
33 cnfldmul 21308 . . . . . 6 · = (.r‘ℂfld)
341, 33mgpplusg 20070 . . . . 5 · = (+g‘(mulGrp‘ℂfld))
3532, 34gsumws4 44354 . . . 4 (((mulGrp‘ℂfld) ∈ Mnd ∧ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)))) → ((mulGrp‘ℂfld) Σg ⟨“𝐴𝐵𝐶𝐷”⟩) = (𝐴 · (𝐵 · (𝐶 · 𝐷))))
3624, 30, 35syl2anc 584 . . 3 (𝜑 → ((mulGrp‘ℂfld) Σg ⟨“𝐴𝐵𝐶𝐷”⟩) = (𝐴 · (𝐵 · (𝐶 · 𝐷))))
37 4nn0 12411 . . . . 5 4 ∈ ℕ0
38 hashfzo0 14344 . . . . 5 (4 ∈ ℕ0 → (♯‘(0..^4)) = 4)
3937, 38mp1i 13 . . . 4 (𝜑 → (♯‘(0..^4)) = 4)
4039oveq2d 7371 . . 3 (𝜑 → (1 / (♯‘(0..^4))) = (1 / 4))
4136, 40oveq12d 7373 . 2 (𝜑 → (((mulGrp‘ℂfld) Σg ⟨“𝐴𝐵𝐶𝐷”⟩)↑𝑐(1 / (♯‘(0..^4)))) = ((𝐴 · (𝐵 · (𝐶 · 𝐷)))↑𝑐(1 / 4)))
42 ringmnd 20169 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
4322, 42mp1i 13 . . . 4 (𝜑 → ℂfld ∈ Mnd)
44 cnfldadd 21306 . . . . 5 + = (+g‘ℂfld)
4531, 44gsumws4 44354 . . . 4 ((ℂfld ∈ Mnd ∧ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)))) → (ℂfld Σg ⟨“𝐴𝐵𝐶𝐷”⟩) = (𝐴 + (𝐵 + (𝐶 + 𝐷))))
4643, 30, 45syl2anc 584 . . 3 (𝜑 → (ℂfld Σg ⟨“𝐴𝐵𝐶𝐷”⟩) = (𝐴 + (𝐵 + (𝐶 + 𝐷))))
4746, 39oveq12d 7373 . 2 (𝜑 → ((ℂfld Σg ⟨“𝐴𝐵𝐶𝐷”⟩) / (♯‘(0..^4))) = ((𝐴 + (𝐵 + (𝐶 + 𝐷))) / 4))
4821, 41, 473brtr3d 5126 1 (𝜑 → ((𝐴 · (𝐵 · (𝐶 · 𝐷)))↑𝑐(1 / 4)) ≤ ((𝐴 + (𝐵 + (𝐶 + 𝐷))) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  c0 4282   class class class wbr 5095  wf 6485  cfv 6489  (class class class)co 7355  Fincfn 8879  cc 11015  0cc0 11017  1c1 11018   + caddc 11020   · cmul 11022  cle 11158   / cdiv 11785  cn 12136  4c4 12193  0cn0 12392  +crp 12896  ..^cfzo 13561  chash 14244  Word cword 14427  ⟨“cs4 14757   Σg cgsu 17351  Mndcmnd 18650  mulGrpcmgp 20066  Ringcrg 20159  fldccnfld 21300  𝑐ccxp 26511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096  ax-mulf 11097
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-fi 9306  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13256  df-ioc 13257  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-fac 14188  df-bc 14217  df-hash 14245  df-word 14428  df-concat 14485  df-s1 14511  df-s2 14762  df-s3 14763  df-s4 14764  df-shft 14981  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-limsup 15385  df-clim 15402  df-rlim 15403  df-sum 15601  df-ef 15981  df-sin 15983  df-cos 15984  df-pi 15986  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-hom 17192  df-cco 17193  df-rest 17333  df-topn 17334  df-0g 17352  df-gsum 17353  df-topgen 17354  df-pt 17355  df-prds 17358  df-xrs 17414  df-qtop 17419  df-imas 17420  df-xps 17422  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-mhm 18699  df-submnd 18700  df-grp 18857  df-minusg 18858  df-mulg 18989  df-subg 19044  df-ghm 19133  df-gim 19179  df-cntz 19237  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161  df-cring 20162  df-oppr 20264  df-dvdsr 20284  df-unit 20285  df-invr 20315  df-dvr 20328  df-subrng 20470  df-subrg 20494  df-drng 20655  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-fbas 21297  df-fg 21298  df-cnfld 21301  df-refld 21551  df-top 22829  df-topon 22846  df-topsp 22868  df-bases 22881  df-cld 22954  df-ntr 22955  df-cls 22956  df-nei 23033  df-lp 23071  df-perf 23072  df-cn 23162  df-cnp 23163  df-haus 23250  df-cmp 23322  df-tx 23497  df-hmeo 23690  df-fil 23781  df-fm 23873  df-flim 23874  df-flf 23875  df-xms 24255  df-ms 24256  df-tms 24257  df-cncf 24818  df-limc 25814  df-dv 25815  df-log 26512  df-cxp 26513
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator