MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngnegr Structured version   Visualization version   GIF version

Theorem rngnegr 19749
Description: Negation in a ring is the same as right multiplication by -1. (rngonegmn1r 36027 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringnegl.b 𝐵 = (Base‘𝑅)
ringnegl.t · = (.r𝑅)
ringnegl.u 1 = (1r𝑅)
ringnegl.n 𝑁 = (invg𝑅)
ringnegl.r (𝜑𝑅 ∈ Ring)
ringnegl.x (𝜑𝑋𝐵)
Assertion
Ref Expression
rngnegr (𝜑 → (𝑋 · (𝑁1 )) = (𝑁𝑋))

Proof of Theorem rngnegr
StepHypRef Expression
1 ringnegl.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 ringnegl.x . . . . 5 (𝜑𝑋𝐵)
3 ringgrp 19703 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
41, 3syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
5 ringnegl.b . . . . . . . 8 𝐵 = (Base‘𝑅)
6 ringnegl.u . . . . . . . 8 1 = (1r𝑅)
75, 6ringidcl 19722 . . . . . . 7 (𝑅 ∈ Ring → 1𝐵)
81, 7syl 17 . . . . . 6 (𝜑1𝐵)
9 ringnegl.n . . . . . . 7 𝑁 = (invg𝑅)
105, 9grpinvcl 18542 . . . . . 6 ((𝑅 ∈ Grp ∧ 1𝐵) → (𝑁1 ) ∈ 𝐵)
114, 8, 10syl2anc 583 . . . . 5 (𝜑 → (𝑁1 ) ∈ 𝐵)
12 eqid 2738 . . . . . 6 (+g𝑅) = (+g𝑅)
13 ringnegl.t . . . . . 6 · = (.r𝑅)
145, 12, 13ringdi 19720 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ (𝑁1 ) ∈ 𝐵1𝐵)) → (𝑋 · ((𝑁1 )(+g𝑅) 1 )) = ((𝑋 · (𝑁1 ))(+g𝑅)(𝑋 · 1 )))
151, 2, 11, 8, 14syl13anc 1370 . . . 4 (𝜑 → (𝑋 · ((𝑁1 )(+g𝑅) 1 )) = ((𝑋 · (𝑁1 ))(+g𝑅)(𝑋 · 1 )))
16 eqid 2738 . . . . . . . 8 (0g𝑅) = (0g𝑅)
175, 12, 16, 9grplinv 18543 . . . . . . 7 ((𝑅 ∈ Grp ∧ 1𝐵) → ((𝑁1 )(+g𝑅) 1 ) = (0g𝑅))
184, 8, 17syl2anc 583 . . . . . 6 (𝜑 → ((𝑁1 )(+g𝑅) 1 ) = (0g𝑅))
1918oveq2d 7271 . . . . 5 (𝜑 → (𝑋 · ((𝑁1 )(+g𝑅) 1 )) = (𝑋 · (0g𝑅)))
205, 13, 16ringrz 19742 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · (0g𝑅)) = (0g𝑅))
211, 2, 20syl2anc 583 . . . . 5 (𝜑 → (𝑋 · (0g𝑅)) = (0g𝑅))
2219, 21eqtrd 2778 . . . 4 (𝜑 → (𝑋 · ((𝑁1 )(+g𝑅) 1 )) = (0g𝑅))
235, 13, 6ringridm 19726 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 1 ) = 𝑋)
241, 2, 23syl2anc 583 . . . . 5 (𝜑 → (𝑋 · 1 ) = 𝑋)
2524oveq2d 7271 . . . 4 (𝜑 → ((𝑋 · (𝑁1 ))(+g𝑅)(𝑋 · 1 )) = ((𝑋 · (𝑁1 ))(+g𝑅)𝑋))
2615, 22, 253eqtr3rd 2787 . . 3 (𝜑 → ((𝑋 · (𝑁1 ))(+g𝑅)𝑋) = (0g𝑅))
275, 13ringcl 19715 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝑁1 ) ∈ 𝐵) → (𝑋 · (𝑁1 )) ∈ 𝐵)
281, 2, 11, 27syl3anc 1369 . . . 4 (𝜑 → (𝑋 · (𝑁1 )) ∈ 𝐵)
295, 12, 16, 9grpinvid2 18546 . . . 4 ((𝑅 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑋 · (𝑁1 )) ∈ 𝐵) → ((𝑁𝑋) = (𝑋 · (𝑁1 )) ↔ ((𝑋 · (𝑁1 ))(+g𝑅)𝑋) = (0g𝑅)))
304, 2, 28, 29syl3anc 1369 . . 3 (𝜑 → ((𝑁𝑋) = (𝑋 · (𝑁1 )) ↔ ((𝑋 · (𝑁1 ))(+g𝑅)𝑋) = (0g𝑅)))
3126, 30mpbird 256 . 2 (𝜑 → (𝑁𝑋) = (𝑋 · (𝑁1 )))
3231eqcomd 2744 1 (𝜑 → (𝑋 · (𝑁1 )) = (𝑁𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  0gc0g 17067  Grpcgrp 18492  invgcminusg 18493  1rcur 19652  Ringcrg 19698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mgp 19636  df-ur 19653  df-ring 19700
This theorem is referenced by:  ringmneg2  19751  irredneg  19867  lmodsubdi  20095  mdetunilem7  21675  ldualvsubval  37098  lcdvsubval  39559  mapdpglem30  39643
  Copyright terms: Public domain W3C validator