![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngnegr | Structured version Visualization version GIF version |
Description: Negation in a ring is the same as right multiplication by -1. (rngonegmn1r 34278 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
Ref | Expression |
---|---|
ringnegl.b | ⊢ 𝐵 = (Base‘𝑅) |
ringnegl.t | ⊢ · = (.r‘𝑅) |
ringnegl.u | ⊢ 1 = (1r‘𝑅) |
ringnegl.n | ⊢ 𝑁 = (invg‘𝑅) |
ringnegl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ringnegl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
rngnegr | ⊢ (𝜑 → (𝑋 · (𝑁‘ 1 )) = (𝑁‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringnegl.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | ringnegl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | ringgrp 18913 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
4 | 1, 3 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
5 | ringnegl.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
6 | ringnegl.u | . . . . . . . 8 ⊢ 1 = (1r‘𝑅) | |
7 | 5, 6 | ringidcl 18929 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
8 | 1, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 1 ∈ 𝐵) |
9 | ringnegl.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑅) | |
10 | 5, 9 | grpinvcl 17828 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → (𝑁‘ 1 ) ∈ 𝐵) |
11 | 4, 8, 10 | syl2anc 579 | . . . . 5 ⊢ (𝜑 → (𝑁‘ 1 ) ∈ 𝐵) |
12 | eqid 2825 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
13 | ringnegl.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
14 | 5, 12, 13 | ringdi 18927 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘ 1 ) ∈ 𝐵 ∧ 1 ∈ 𝐵)) → (𝑋 · ((𝑁‘ 1 )(+g‘𝑅) 1 )) = ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)(𝑋 · 1 ))) |
15 | 1, 2, 11, 8, 14 | syl13anc 1495 | . . . 4 ⊢ (𝜑 → (𝑋 · ((𝑁‘ 1 )(+g‘𝑅) 1 )) = ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)(𝑋 · 1 ))) |
16 | eqid 2825 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
17 | 5, 12, 16, 9 | grplinv 17829 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → ((𝑁‘ 1 )(+g‘𝑅) 1 ) = (0g‘𝑅)) |
18 | 4, 8, 17 | syl2anc 579 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘ 1 )(+g‘𝑅) 1 ) = (0g‘𝑅)) |
19 | 18 | oveq2d 6926 | . . . . 5 ⊢ (𝜑 → (𝑋 · ((𝑁‘ 1 )(+g‘𝑅) 1 )) = (𝑋 · (0g‘𝑅))) |
20 | 5, 13, 16 | ringrz 18949 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · (0g‘𝑅)) = (0g‘𝑅)) |
21 | 1, 2, 20 | syl2anc 579 | . . . . 5 ⊢ (𝜑 → (𝑋 · (0g‘𝑅)) = (0g‘𝑅)) |
22 | 19, 21 | eqtrd 2861 | . . . 4 ⊢ (𝜑 → (𝑋 · ((𝑁‘ 1 )(+g‘𝑅) 1 )) = (0g‘𝑅)) |
23 | 5, 13, 6 | ringridm 18933 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 1 ) = 𝑋) |
24 | 1, 2, 23 | syl2anc 579 | . . . . 5 ⊢ (𝜑 → (𝑋 · 1 ) = 𝑋) |
25 | 24 | oveq2d 6926 | . . . 4 ⊢ (𝜑 → ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)(𝑋 · 1 )) = ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)𝑋)) |
26 | 15, 22, 25 | 3eqtr3rd 2870 | . . 3 ⊢ (𝜑 → ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)𝑋) = (0g‘𝑅)) |
27 | 5, 13 | ringcl 18922 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝑁‘ 1 ) ∈ 𝐵) → (𝑋 · (𝑁‘ 1 )) ∈ 𝐵) |
28 | 1, 2, 11, 27 | syl3anc 1494 | . . . 4 ⊢ (𝜑 → (𝑋 · (𝑁‘ 1 )) ∈ 𝐵) |
29 | 5, 12, 16, 9 | grpinvid2 17832 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ (𝑋 · (𝑁‘ 1 )) ∈ 𝐵) → ((𝑁‘𝑋) = (𝑋 · (𝑁‘ 1 )) ↔ ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)𝑋) = (0g‘𝑅))) |
30 | 4, 2, 28, 29 | syl3anc 1494 | . . 3 ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑋 · (𝑁‘ 1 )) ↔ ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)𝑋) = (0g‘𝑅))) |
31 | 26, 30 | mpbird 249 | . 2 ⊢ (𝜑 → (𝑁‘𝑋) = (𝑋 · (𝑁‘ 1 ))) |
32 | 31 | eqcomd 2831 | 1 ⊢ (𝜑 → (𝑋 · (𝑁‘ 1 )) = (𝑁‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1656 ∈ wcel 2164 ‘cfv 6127 (class class class)co 6910 Basecbs 16229 +gcplusg 16312 .rcmulr 16313 0gc0g 16460 Grpcgrp 17783 invgcminusg 17784 1rcur 18862 Ringcrg 18908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-2 11421 df-ndx 16232 df-slot 16233 df-base 16235 df-sets 16236 df-plusg 16325 df-0g 16462 df-mgm 17602 df-sgrp 17644 df-mnd 17655 df-grp 17786 df-minusg 17787 df-mgp 18851 df-ur 18863 df-ring 18910 |
This theorem is referenced by: ringmneg2 18958 irredneg 19071 lmodsubdi 19283 mdetunilem7 20799 ldualvsubval 35227 lcdvsubval 37688 mapdpglem30 37772 |
Copyright terms: Public domain | W3C validator |