Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rusgrpropadjvtx | Structured version Visualization version GIF version |
Description: The properties of a k-regular simple graph expressed with adjacent vertices. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
rusgrpropnb.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
rusgrpropadjvtx | ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrpropnb.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | rusgrpropnb 27950 | . 2 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾)) |
3 | simp1 1135 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → 𝐺 ∈ USGraph) | |
4 | simp2 1136 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → 𝐾 ∈ ℕ0*) | |
5 | eqid 2738 | . . . . . . . . . . . 12 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
6 | 1, 5 | nbusgrvtx 27715 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) → (𝐺 NeighbVtx 𝑣) = {𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) |
7 | 6 | fveq2d 6778 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑣)) = (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)})) |
8 | 7 | eqcomd 2744 | . . . . . . . . 9 ⊢ ((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) → (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = (♯‘(𝐺 NeighbVtx 𝑣))) |
9 | 8 | adantr 481 | . . . . . . . 8 ⊢ (((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = (♯‘(𝐺 NeighbVtx 𝑣))) |
10 | simpr 485 | . . . . . . . 8 ⊢ (((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) | |
11 | 9, 10 | eqtrd 2778 | . . . . . . 7 ⊢ (((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾) |
12 | 11 | ex 413 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) → ((♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 → (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾)) |
13 | 12 | ralimdva 3108 | . . . . 5 ⊢ (𝐺 ∈ USGraph → (∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 → ∀𝑣 ∈ 𝑉 (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾)) |
14 | 13 | imp 407 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → ∀𝑣 ∈ 𝑉 (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾) |
15 | 14 | 3adant2 1130 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → ∀𝑣 ∈ 𝑉 (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾) |
16 | 3, 4, 15 | 3jca 1127 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾)) |
17 | 2, 16 | syl 17 | 1 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 {cpr 4563 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ℕ0*cxnn0 12305 ♯chash 14044 Vtxcvtx 27366 Edgcedg 27417 USGraphcusgr 27519 NeighbVtx cnbgr 27699 RegUSGraph crusgr 27923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-xadd 12849 df-fz 13240 df-hash 14045 df-edg 27418 df-uhgr 27428 df-ushgr 27429 df-upgr 27452 df-umgr 27453 df-uspgr 27520 df-usgr 27521 df-nbgr 27700 df-vtxdg 27833 df-rgr 27924 df-rusgr 27925 |
This theorem is referenced by: rusgrnumwrdl2 27953 rusgrnumwwlks 28339 |
Copyright terms: Public domain | W3C validator |