Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrpropadjvtx Structured version   Visualization version   GIF version

 Description: The properties of a k-regular simple graph expressed with adjacent vertices. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 27-Dec-2020.)
Hypothesis
Ref Expression
rusgrpropnb.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
rusgrpropadjvtx (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘{𝑘𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾))
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾   𝑘,𝐺,𝑣   𝑘,𝑉
Allowed substitution hints:   𝐾(𝑘)   𝑉(𝑣)

StepHypRef Expression
1 rusgrpropnb.v . . 3 𝑉 = (Vtx‘𝐺)
21rusgrpropnb 27414 . 2 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾))
3 simp1 1133 . . 3 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → 𝐺 ∈ USGraph)
4 simp2 1134 . . 3 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → 𝐾 ∈ ℕ0*)
5 eqid 2798 . . . . . . . . . . . 12 (Edg‘𝐺) = (Edg‘𝐺)
61, 5nbusgrvtx 27179 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ 𝑣𝑉) → (𝐺 NeighbVtx 𝑣) = {𝑘𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)})
76fveq2d 6656 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝑣𝑉) → (♯‘(𝐺 NeighbVtx 𝑣)) = (♯‘{𝑘𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}))
87eqcomd 2804 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝑣𝑉) → (♯‘{𝑘𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = (♯‘(𝐺 NeighbVtx 𝑣)))
98adantr 484 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑣𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (♯‘{𝑘𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = (♯‘(𝐺 NeighbVtx 𝑣)))
10 simpr 488 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑣𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾)
119, 10eqtrd 2833 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑣𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (♯‘{𝑘𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾)
1211ex 416 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑣𝑉) → ((♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 → (♯‘{𝑘𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾))
1312ralimdva 3144 . . . . 5 (𝐺 ∈ USGraph → (∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 → ∀𝑣𝑉 (♯‘{𝑘𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾))
1413imp 410 . . . 4 ((𝐺 ∈ USGraph ∧ ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → ∀𝑣𝑉 (♯‘{𝑘𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾)
15143adant2 1128 . . 3 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → ∀𝑣𝑉 (♯‘{𝑘𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾)
163, 4, 153jca 1125 . 2 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘{𝑘𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾))
172, 16syl 17 1 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘{𝑘𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3106  {crab 3110  {cpr 4529   class class class wbr 5033  ‘cfv 6329  (class class class)co 7142  ℕ0*cxnn0 11972  ♯chash 13703  Vtxcvtx 26830  Edgcedg 26881  USGraphcusgr 26983   NeighbVtx cnbgr 27163   RegUSGraph crusgr 27387 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7451  ax-cnex 10597  ax-resscn 10598  ax-1cn 10599  ax-icn 10600  ax-addcl 10601  ax-addrcl 10602  ax-mulcl 10603  ax-mulrcl 10604  ax-mulcom 10605  ax-addass 10606  ax-mulass 10607  ax-distr 10608  ax-i2m1 10609  ax-1ne0 10610  ax-1rid 10611  ax-rnegex 10612  ax-rrecex 10613  ax-cnre 10614  ax-pre-lttri 10615  ax-pre-lttrn 10616  ax-pre-ltadd 10617  ax-pre-mulgt0 10618 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3722  df-csb 3830  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-nul 4246  df-if 4428  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7571  df-1st 7681  df-2nd 7682  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-1o 8100  df-2o 8101  df-oadd 8104  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-fin 8511  df-dju 9329  df-card 9367  df-pnf 10681  df-mnf 10682  df-xr 10683  df-ltxr 10684  df-le 10685  df-sub 10876  df-neg 10877  df-nn 11641  df-2 11703  df-n0 11901  df-xnn0 11973  df-z 11987  df-uz 12249  df-xadd 12513  df-fz 12903  df-hash 13704  df-edg 26882  df-uhgr 26892  df-ushgr 26893  df-upgr 26916  df-umgr 26917  df-uspgr 26984  df-usgr 26985  df-nbgr 27164  df-vtxdg 27297  df-rgr 27388  df-rusgr 27389 This theorem is referenced by:  rusgrnumwrdl2  27417  rusgrnumwwlks  27801
 Copyright terms: Public domain W3C validator