| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rusgrpropadjvtx | Structured version Visualization version GIF version | ||
| Description: The properties of a k-regular simple graph expressed with adjacent vertices. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 27-Dec-2020.) |
| Ref | Expression |
|---|---|
| rusgrpropnb.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| rusgrpropadjvtx | ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rusgrpropnb.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | rusgrpropnb 29568 | . 2 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾)) |
| 3 | simp1 1136 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → 𝐺 ∈ USGraph) | |
| 4 | simp2 1137 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → 𝐾 ∈ ℕ0*) | |
| 5 | eqid 2736 | . . . . . . . . . . . 12 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 6 | 1, 5 | nbusgrvtx 29332 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) → (𝐺 NeighbVtx 𝑣) = {𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) |
| 7 | 6 | fveq2d 6885 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑣)) = (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)})) |
| 8 | 7 | eqcomd 2742 | . . . . . . . . 9 ⊢ ((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) → (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = (♯‘(𝐺 NeighbVtx 𝑣))) |
| 9 | 8 | adantr 480 | . . . . . . . 8 ⊢ (((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = (♯‘(𝐺 NeighbVtx 𝑣))) |
| 10 | simpr 484 | . . . . . . . 8 ⊢ (((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) | |
| 11 | 9, 10 | eqtrd 2771 | . . . . . . 7 ⊢ (((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾) |
| 12 | 11 | ex 412 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) → ((♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 → (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾)) |
| 13 | 12 | ralimdva 3153 | . . . . 5 ⊢ (𝐺 ∈ USGraph → (∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 → ∀𝑣 ∈ 𝑉 (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾)) |
| 14 | 13 | imp 406 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → ∀𝑣 ∈ 𝑉 (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾) |
| 15 | 14 | 3adant2 1131 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → ∀𝑣 ∈ 𝑉 (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾) |
| 16 | 3, 4, 15 | 3jca 1128 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾)) |
| 17 | 2, 16 | syl 17 | 1 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {crab 3420 {cpr 4608 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ℕ0*cxnn0 12579 ♯chash 14353 Vtxcvtx 28980 Edgcedg 29031 USGraphcusgr 29133 NeighbVtx cnbgr 29316 RegUSGraph crusgr 29541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-xnn0 12580 df-z 12594 df-uz 12858 df-xadd 13134 df-fz 13530 df-hash 14354 df-edg 29032 df-uhgr 29042 df-ushgr 29043 df-upgr 29066 df-umgr 29067 df-uspgr 29134 df-usgr 29135 df-nbgr 29317 df-vtxdg 29451 df-rgr 29542 df-rusgr 29543 |
| This theorem is referenced by: rusgrnumwrdl2 29571 rusgrnumwwlks 29961 |
| Copyright terms: Public domain | W3C validator |