![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rusgrpropadjvtx | Structured version Visualization version GIF version |
Description: The properties of a k-regular simple graph expressed with adjacent vertices. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
rusgrpropnb.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
rusgrpropadjvtx | ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrpropnb.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | rusgrpropnb 29108 | . 2 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾)) |
3 | simp1 1135 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → 𝐺 ∈ USGraph) | |
4 | simp2 1136 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → 𝐾 ∈ ℕ0*) | |
5 | eqid 2731 | . . . . . . . . . . . 12 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
6 | 1, 5 | nbusgrvtx 28873 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) → (𝐺 NeighbVtx 𝑣) = {𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) |
7 | 6 | fveq2d 6895 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑣)) = (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)})) |
8 | 7 | eqcomd 2737 | . . . . . . . . 9 ⊢ ((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) → (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = (♯‘(𝐺 NeighbVtx 𝑣))) |
9 | 8 | adantr 480 | . . . . . . . 8 ⊢ (((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = (♯‘(𝐺 NeighbVtx 𝑣))) |
10 | simpr 484 | . . . . . . . 8 ⊢ (((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) | |
11 | 9, 10 | eqtrd 2771 | . . . . . . 7 ⊢ (((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) ∧ (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾) |
12 | 11 | ex 412 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) → ((♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 → (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾)) |
13 | 12 | ralimdva 3166 | . . . . 5 ⊢ (𝐺 ∈ USGraph → (∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 → ∀𝑣 ∈ 𝑉 (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾)) |
14 | 13 | imp 406 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → ∀𝑣 ∈ 𝑉 (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾) |
15 | 14 | 3adant2 1130 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → ∀𝑣 ∈ 𝑉 (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾) |
16 | 3, 4, 15 | 3jca 1127 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾)) |
17 | 2, 16 | syl 17 | 1 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3060 {crab 3431 {cpr 4630 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 ℕ0*cxnn0 12549 ♯chash 14295 Vtxcvtx 28524 Edgcedg 28575 USGraphcusgr 28677 NeighbVtx cnbgr 28857 RegUSGraph crusgr 29081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-2o 8471 df-oadd 8474 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-dju 9900 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-xnn0 12550 df-z 12564 df-uz 12828 df-xadd 13098 df-fz 13490 df-hash 14296 df-edg 28576 df-uhgr 28586 df-ushgr 28587 df-upgr 28610 df-umgr 28611 df-uspgr 28678 df-usgr 28679 df-nbgr 28858 df-vtxdg 28991 df-rgr 29082 df-rusgr 29083 |
This theorem is referenced by: rusgrnumwrdl2 29111 rusgrnumwwlks 29496 |
Copyright terms: Public domain | W3C validator |