| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > s2rnOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of s2rn 14983 as of 1-Aug-2025. Range of a length 2 string. (Contributed by Thierry Arnoux, 19-Sep-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| s2rnOLD.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
| s2rnOLD.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| s2rnOLD | ⊢ (𝜑 → ran 〈“𝐼𝐽”〉 = {𝐼, 𝐽}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadmrn 6068 | . 2 ⊢ (〈“𝐼𝐽”〉 “ dom 〈“𝐼𝐽”〉) = ran 〈“𝐼𝐽”〉 | |
| 2 | s2rnOLD.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
| 3 | s2rnOLD.j | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
| 4 | 2, 3 | s2cld 14891 | . . . . . 6 ⊢ (𝜑 → 〈“𝐼𝐽”〉 ∈ Word 𝐷) |
| 5 | wrdfn 14547 | . . . . . 6 ⊢ (〈“𝐼𝐽”〉 ∈ Word 𝐷 → 〈“𝐼𝐽”〉 Fn (0..^(♯‘〈“𝐼𝐽”〉))) | |
| 6 | s2len 14909 | . . . . . . . . . 10 ⊢ (♯‘〈“𝐼𝐽”〉) = 2 | |
| 7 | 6 | oveq2i 7423 | . . . . . . . . 9 ⊢ (0..^(♯‘〈“𝐼𝐽”〉)) = (0..^2) |
| 8 | fzo0to2pr 13770 | . . . . . . . . 9 ⊢ (0..^2) = {0, 1} | |
| 9 | 7, 8 | eqtri 2757 | . . . . . . . 8 ⊢ (0..^(♯‘〈“𝐼𝐽”〉)) = {0, 1} |
| 10 | 9 | fneq2i 6645 | . . . . . . 7 ⊢ (〈“𝐼𝐽”〉 Fn (0..^(♯‘〈“𝐼𝐽”〉)) ↔ 〈“𝐼𝐽”〉 Fn {0, 1}) |
| 11 | 10 | biimpi 216 | . . . . . 6 ⊢ (〈“𝐼𝐽”〉 Fn (0..^(♯‘〈“𝐼𝐽”〉)) → 〈“𝐼𝐽”〉 Fn {0, 1}) |
| 12 | 4, 5, 11 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 〈“𝐼𝐽”〉 Fn {0, 1}) |
| 13 | 12 | fndmd 6652 | . . . 4 ⊢ (𝜑 → dom 〈“𝐼𝐽”〉 = {0, 1}) |
| 14 | 13 | imaeq2d 6058 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽”〉 “ dom 〈“𝐼𝐽”〉) = (〈“𝐼𝐽”〉 “ {0, 1})) |
| 15 | c0ex 11236 | . . . . . 6 ⊢ 0 ∈ V | |
| 16 | 15 | prid1 4742 | . . . . 5 ⊢ 0 ∈ {0, 1} |
| 17 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ {0, 1}) |
| 18 | 1ex 11238 | . . . . . 6 ⊢ 1 ∈ V | |
| 19 | 18 | prid2 4743 | . . . . 5 ⊢ 1 ∈ {0, 1} |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (𝜑 → 1 ∈ {0, 1}) |
| 21 | fnimapr 6971 | . . . 4 ⊢ ((〈“𝐼𝐽”〉 Fn {0, 1} ∧ 0 ∈ {0, 1} ∧ 1 ∈ {0, 1}) → (〈“𝐼𝐽”〉 “ {0, 1}) = {(〈“𝐼𝐽”〉‘0), (〈“𝐼𝐽”〉‘1)}) | |
| 22 | 12, 17, 20, 21 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽”〉 “ {0, 1}) = {(〈“𝐼𝐽”〉‘0), (〈“𝐼𝐽”〉‘1)}) |
| 23 | s2fv0 14907 | . . . . 5 ⊢ (𝐼 ∈ 𝐷 → (〈“𝐼𝐽”〉‘0) = 𝐼) | |
| 24 | 2, 23 | syl 17 | . . . 4 ⊢ (𝜑 → (〈“𝐼𝐽”〉‘0) = 𝐼) |
| 25 | s2fv1 14908 | . . . . 5 ⊢ (𝐽 ∈ 𝐷 → (〈“𝐼𝐽”〉‘1) = 𝐽) | |
| 26 | 3, 25 | syl 17 | . . . 4 ⊢ (𝜑 → (〈“𝐼𝐽”〉‘1) = 𝐽) |
| 27 | 24, 26 | preq12d 4721 | . . 3 ⊢ (𝜑 → {(〈“𝐼𝐽”〉‘0), (〈“𝐼𝐽”〉‘1)} = {𝐼, 𝐽}) |
| 28 | 14, 22, 27 | 3eqtrd 2773 | . 2 ⊢ (𝜑 → (〈“𝐼𝐽”〉 “ dom 〈“𝐼𝐽”〉) = {𝐼, 𝐽}) |
| 29 | 1, 28 | eqtr3id 2783 | 1 ⊢ (𝜑 → ran 〈“𝐼𝐽”〉 = {𝐼, 𝐽}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {cpr 4608 dom cdm 5665 ran crn 5666 “ cima 5668 Fn wfn 6535 ‘cfv 6540 (class class class)co 7412 0cc0 11136 1c1 11137 2c2 12302 ..^cfzo 13675 ♯chash 14350 Word cword 14533 〈“cs2 14861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-n0 12509 df-z 12596 df-uz 12860 df-fz 13529 df-fzo 13676 df-hash 14351 df-word 14534 df-concat 14590 df-s1 14615 df-s2 14868 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |