| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > s2rnOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of s2rn 14862 as of 1-Aug-2025. Range of a length 2 string. (Contributed by Thierry Arnoux, 19-Sep-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| s2rnOLD.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
| s2rnOLD.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| s2rnOLD | ⊢ (𝜑 → ran 〈“𝐼𝐽”〉 = {𝐼, 𝐽}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadmrn 6016 | . 2 ⊢ (〈“𝐼𝐽”〉 “ dom 〈“𝐼𝐽”〉) = ran 〈“𝐼𝐽”〉 | |
| 2 | s2rnOLD.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
| 3 | s2rnOLD.j | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
| 4 | 2, 3 | s2cld 14770 | . . . . . 6 ⊢ (𝜑 → 〈“𝐼𝐽”〉 ∈ Word 𝐷) |
| 5 | wrdfn 14427 | . . . . . 6 ⊢ (〈“𝐼𝐽”〉 ∈ Word 𝐷 → 〈“𝐼𝐽”〉 Fn (0..^(♯‘〈“𝐼𝐽”〉))) | |
| 6 | s2len 14788 | . . . . . . . . . 10 ⊢ (♯‘〈“𝐼𝐽”〉) = 2 | |
| 7 | 6 | oveq2i 7352 | . . . . . . . . 9 ⊢ (0..^(♯‘〈“𝐼𝐽”〉)) = (0..^2) |
| 8 | fzo0to2pr 13642 | . . . . . . . . 9 ⊢ (0..^2) = {0, 1} | |
| 9 | 7, 8 | eqtri 2753 | . . . . . . . 8 ⊢ (0..^(♯‘〈“𝐼𝐽”〉)) = {0, 1} |
| 10 | 9 | fneq2i 6575 | . . . . . . 7 ⊢ (〈“𝐼𝐽”〉 Fn (0..^(♯‘〈“𝐼𝐽”〉)) ↔ 〈“𝐼𝐽”〉 Fn {0, 1}) |
| 11 | 10 | biimpi 216 | . . . . . 6 ⊢ (〈“𝐼𝐽”〉 Fn (0..^(♯‘〈“𝐼𝐽”〉)) → 〈“𝐼𝐽”〉 Fn {0, 1}) |
| 12 | 4, 5, 11 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 〈“𝐼𝐽”〉 Fn {0, 1}) |
| 13 | 12 | fndmd 6582 | . . . 4 ⊢ (𝜑 → dom 〈“𝐼𝐽”〉 = {0, 1}) |
| 14 | 13 | imaeq2d 6006 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽”〉 “ dom 〈“𝐼𝐽”〉) = (〈“𝐼𝐽”〉 “ {0, 1})) |
| 15 | c0ex 11098 | . . . . . 6 ⊢ 0 ∈ V | |
| 16 | 15 | prid1 4713 | . . . . 5 ⊢ 0 ∈ {0, 1} |
| 17 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ {0, 1}) |
| 18 | 1ex 11100 | . . . . . 6 ⊢ 1 ∈ V | |
| 19 | 18 | prid2 4714 | . . . . 5 ⊢ 1 ∈ {0, 1} |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (𝜑 → 1 ∈ {0, 1}) |
| 21 | fnimapr 6900 | . . . 4 ⊢ ((〈“𝐼𝐽”〉 Fn {0, 1} ∧ 0 ∈ {0, 1} ∧ 1 ∈ {0, 1}) → (〈“𝐼𝐽”〉 “ {0, 1}) = {(〈“𝐼𝐽”〉‘0), (〈“𝐼𝐽”〉‘1)}) | |
| 22 | 12, 17, 20, 21 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽”〉 “ {0, 1}) = {(〈“𝐼𝐽”〉‘0), (〈“𝐼𝐽”〉‘1)}) |
| 23 | s2fv0 14786 | . . . . 5 ⊢ (𝐼 ∈ 𝐷 → (〈“𝐼𝐽”〉‘0) = 𝐼) | |
| 24 | 2, 23 | syl 17 | . . . 4 ⊢ (𝜑 → (〈“𝐼𝐽”〉‘0) = 𝐼) |
| 25 | s2fv1 14787 | . . . . 5 ⊢ (𝐽 ∈ 𝐷 → (〈“𝐼𝐽”〉‘1) = 𝐽) | |
| 26 | 3, 25 | syl 17 | . . . 4 ⊢ (𝜑 → (〈“𝐼𝐽”〉‘1) = 𝐽) |
| 27 | 24, 26 | preq12d 4692 | . . 3 ⊢ (𝜑 → {(〈“𝐼𝐽”〉‘0), (〈“𝐼𝐽”〉‘1)} = {𝐼, 𝐽}) |
| 28 | 14, 22, 27 | 3eqtrd 2769 | . 2 ⊢ (𝜑 → (〈“𝐼𝐽”〉 “ dom 〈“𝐼𝐽”〉) = {𝐼, 𝐽}) |
| 29 | 1, 28 | eqtr3id 2779 | 1 ⊢ (𝜑 → ran 〈“𝐼𝐽”〉 = {𝐼, 𝐽}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 {cpr 4576 dom cdm 5614 ran crn 5615 “ cima 5617 Fn wfn 6472 ‘cfv 6477 (class class class)co 7341 0cc0 10998 1c1 10999 2c2 12172 ..^cfzo 13546 ♯chash 14229 Word cword 14412 〈“cs2 14740 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-n0 12374 df-z 12461 df-uz 12725 df-fz 13400 df-fzo 13547 df-hash 14230 df-word 14413 df-concat 14470 df-s1 14496 df-s2 14747 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |