Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  s2rnOLD Structured version   Visualization version   GIF version

Theorem s2rnOLD 32902
Description: Obsolete version of s2rn 15008 as of 1-Aug-2025. Range of a length 2 string. (Contributed by Thierry Arnoux, 19-Sep-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
s2rnOLD.i (𝜑𝐼𝐷)
s2rnOLD.j (𝜑𝐽𝐷)
Assertion
Ref Expression
s2rnOLD (𝜑 → ran ⟨“𝐼𝐽”⟩ = {𝐼, 𝐽})

Proof of Theorem s2rnOLD
StepHypRef Expression
1 imadmrn 6098 . 2 (⟨“𝐼𝐽”⟩ “ dom ⟨“𝐼𝐽”⟩) = ran ⟨“𝐼𝐽”⟩
2 s2rnOLD.i . . . . . . 7 (𝜑𝐼𝐷)
3 s2rnOLD.j . . . . . . 7 (𝜑𝐽𝐷)
42, 3s2cld 14916 . . . . . 6 (𝜑 → ⟨“𝐼𝐽”⟩ ∈ Word 𝐷)
5 wrdfn 14572 . . . . . 6 (⟨“𝐼𝐽”⟩ ∈ Word 𝐷 → ⟨“𝐼𝐽”⟩ Fn (0..^(♯‘⟨“𝐼𝐽”⟩)))
6 s2len 14934 . . . . . . . . . 10 (♯‘⟨“𝐼𝐽”⟩) = 2
76oveq2i 7456 . . . . . . . . 9 (0..^(♯‘⟨“𝐼𝐽”⟩)) = (0..^2)
8 fzo0to2pr 13797 . . . . . . . . 9 (0..^2) = {0, 1}
97, 8eqtri 2762 . . . . . . . 8 (0..^(♯‘⟨“𝐼𝐽”⟩)) = {0, 1}
109fneq2i 6676 . . . . . . 7 (⟨“𝐼𝐽”⟩ Fn (0..^(♯‘⟨“𝐼𝐽”⟩)) ↔ ⟨“𝐼𝐽”⟩ Fn {0, 1})
1110biimpi 216 . . . . . 6 (⟨“𝐼𝐽”⟩ Fn (0..^(♯‘⟨“𝐼𝐽”⟩)) → ⟨“𝐼𝐽”⟩ Fn {0, 1})
124, 5, 113syl 18 . . . . 5 (𝜑 → ⟨“𝐼𝐽”⟩ Fn {0, 1})
1312fndmd 6683 . . . 4 (𝜑 → dom ⟨“𝐼𝐽”⟩ = {0, 1})
1413imaeq2d 6088 . . 3 (𝜑 → (⟨“𝐼𝐽”⟩ “ dom ⟨“𝐼𝐽”⟩) = (⟨“𝐼𝐽”⟩ “ {0, 1}))
15 c0ex 11280 . . . . . 6 0 ∈ V
1615prid1 4787 . . . . 5 0 ∈ {0, 1}
1716a1i 11 . . . 4 (𝜑 → 0 ∈ {0, 1})
18 1ex 11282 . . . . . 6 1 ∈ V
1918prid2 4788 . . . . 5 1 ∈ {0, 1}
2019a1i 11 . . . 4 (𝜑 → 1 ∈ {0, 1})
21 fnimapr 7003 . . . 4 ((⟨“𝐼𝐽”⟩ Fn {0, 1} ∧ 0 ∈ {0, 1} ∧ 1 ∈ {0, 1}) → (⟨“𝐼𝐽”⟩ “ {0, 1}) = {(⟨“𝐼𝐽”⟩‘0), (⟨“𝐼𝐽”⟩‘1)})
2212, 17, 20, 21syl3anc 1371 . . 3 (𝜑 → (⟨“𝐼𝐽”⟩ “ {0, 1}) = {(⟨“𝐼𝐽”⟩‘0), (⟨“𝐼𝐽”⟩‘1)})
23 s2fv0 14932 . . . . 5 (𝐼𝐷 → (⟨“𝐼𝐽”⟩‘0) = 𝐼)
242, 23syl 17 . . . 4 (𝜑 → (⟨“𝐼𝐽”⟩‘0) = 𝐼)
25 s2fv1 14933 . . . . 5 (𝐽𝐷 → (⟨“𝐼𝐽”⟩‘1) = 𝐽)
263, 25syl 17 . . . 4 (𝜑 → (⟨“𝐼𝐽”⟩‘1) = 𝐽)
2724, 26preq12d 4766 . . 3 (𝜑 → {(⟨“𝐼𝐽”⟩‘0), (⟨“𝐼𝐽”⟩‘1)} = {𝐼, 𝐽})
2814, 22, 273eqtrd 2778 . 2 (𝜑 → (⟨“𝐼𝐽”⟩ “ dom ⟨“𝐼𝐽”⟩) = {𝐼, 𝐽})
291, 28eqtr3id 2788 1 (𝜑 → ran ⟨“𝐼𝐽”⟩ = {𝐼, 𝐽})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2103  {cpr 4650  dom cdm 5699  ran crn 5700  cima 5702   Fn wfn 6567  cfv 6572  (class class class)co 7445  0cc0 11180  1c1 11181  2c2 12344  ..^cfzo 13707  chash 14375  Word cword 14558  ⟨“cs2 14886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-1st 8026  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-er 8759  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003  df-card 10004  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-nn 12290  df-2 12352  df-n0 12550  df-z 12636  df-uz 12900  df-fz 13564  df-fzo 13708  df-hash 14376  df-word 14559  df-concat 14615  df-s1 14640  df-s2 14893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator