| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > s2rnOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of s2rn 14888 as of 1-Aug-2025. Range of a length 2 string. (Contributed by Thierry Arnoux, 19-Sep-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| s2rnOLD.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
| s2rnOLD.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| s2rnOLD | ⊢ (𝜑 → ran 〈“𝐼𝐽”〉 = {𝐼, 𝐽}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadmrn 6025 | . 2 ⊢ (〈“𝐼𝐽”〉 “ dom 〈“𝐼𝐽”〉) = ran 〈“𝐼𝐽”〉 | |
| 2 | s2rnOLD.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
| 3 | s2rnOLD.j | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
| 4 | 2, 3 | s2cld 14796 | . . . . . 6 ⊢ (𝜑 → 〈“𝐼𝐽”〉 ∈ Word 𝐷) |
| 5 | wrdfn 14453 | . . . . . 6 ⊢ (〈“𝐼𝐽”〉 ∈ Word 𝐷 → 〈“𝐼𝐽”〉 Fn (0..^(♯‘〈“𝐼𝐽”〉))) | |
| 6 | s2len 14814 | . . . . . . . . . 10 ⊢ (♯‘〈“𝐼𝐽”〉) = 2 | |
| 7 | 6 | oveq2i 7364 | . . . . . . . . 9 ⊢ (0..^(♯‘〈“𝐼𝐽”〉)) = (0..^2) |
| 8 | fzo0to2pr 13671 | . . . . . . . . 9 ⊢ (0..^2) = {0, 1} | |
| 9 | 7, 8 | eqtri 2752 | . . . . . . . 8 ⊢ (0..^(♯‘〈“𝐼𝐽”〉)) = {0, 1} |
| 10 | 9 | fneq2i 6584 | . . . . . . 7 ⊢ (〈“𝐼𝐽”〉 Fn (0..^(♯‘〈“𝐼𝐽”〉)) ↔ 〈“𝐼𝐽”〉 Fn {0, 1}) |
| 11 | 10 | biimpi 216 | . . . . . 6 ⊢ (〈“𝐼𝐽”〉 Fn (0..^(♯‘〈“𝐼𝐽”〉)) → 〈“𝐼𝐽”〉 Fn {0, 1}) |
| 12 | 4, 5, 11 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 〈“𝐼𝐽”〉 Fn {0, 1}) |
| 13 | 12 | fndmd 6591 | . . . 4 ⊢ (𝜑 → dom 〈“𝐼𝐽”〉 = {0, 1}) |
| 14 | 13 | imaeq2d 6015 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽”〉 “ dom 〈“𝐼𝐽”〉) = (〈“𝐼𝐽”〉 “ {0, 1})) |
| 15 | c0ex 11128 | . . . . . 6 ⊢ 0 ∈ V | |
| 16 | 15 | prid1 4716 | . . . . 5 ⊢ 0 ∈ {0, 1} |
| 17 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ {0, 1}) |
| 18 | 1ex 11130 | . . . . . 6 ⊢ 1 ∈ V | |
| 19 | 18 | prid2 4717 | . . . . 5 ⊢ 1 ∈ {0, 1} |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (𝜑 → 1 ∈ {0, 1}) |
| 21 | fnimapr 6910 | . . . 4 ⊢ ((〈“𝐼𝐽”〉 Fn {0, 1} ∧ 0 ∈ {0, 1} ∧ 1 ∈ {0, 1}) → (〈“𝐼𝐽”〉 “ {0, 1}) = {(〈“𝐼𝐽”〉‘0), (〈“𝐼𝐽”〉‘1)}) | |
| 22 | 12, 17, 20, 21 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽”〉 “ {0, 1}) = {(〈“𝐼𝐽”〉‘0), (〈“𝐼𝐽”〉‘1)}) |
| 23 | s2fv0 14812 | . . . . 5 ⊢ (𝐼 ∈ 𝐷 → (〈“𝐼𝐽”〉‘0) = 𝐼) | |
| 24 | 2, 23 | syl 17 | . . . 4 ⊢ (𝜑 → (〈“𝐼𝐽”〉‘0) = 𝐼) |
| 25 | s2fv1 14813 | . . . . 5 ⊢ (𝐽 ∈ 𝐷 → (〈“𝐼𝐽”〉‘1) = 𝐽) | |
| 26 | 3, 25 | syl 17 | . . . 4 ⊢ (𝜑 → (〈“𝐼𝐽”〉‘1) = 𝐽) |
| 27 | 24, 26 | preq12d 4695 | . . 3 ⊢ (𝜑 → {(〈“𝐼𝐽”〉‘0), (〈“𝐼𝐽”〉‘1)} = {𝐼, 𝐽}) |
| 28 | 14, 22, 27 | 3eqtrd 2768 | . 2 ⊢ (𝜑 → (〈“𝐼𝐽”〉 “ dom 〈“𝐼𝐽”〉) = {𝐼, 𝐽}) |
| 29 | 1, 28 | eqtr3id 2778 | 1 ⊢ (𝜑 → ran 〈“𝐼𝐽”〉 = {𝐼, 𝐽}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cpr 4581 dom cdm 5623 ran crn 5624 “ cima 5626 Fn wfn 6481 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 2c2 12201 ..^cfzo 13575 ♯chash 14255 Word cword 14438 〈“cs2 14766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-hash 14256 df-word 14439 df-concat 14496 df-s1 14521 df-s2 14773 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |