Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbgoldbaltlem2 Structured version   Visualization version   GIF version

Theorem sbgoldbaltlem2 47179
Description: Lemma 2 for sbgoldbalt 47180: If an even number greater than 4 is the sum of two primes, the primes must be odd, i.e. not 2. (Contributed by AV, 22-Jul-2020.)
Assertion
Ref Expression
sbgoldbaltlem2 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 𝑄)) → (𝑃 ∈ Odd ∧ 𝑄 ∈ Odd )))

Proof of Theorem sbgoldbaltlem2
StepHypRef Expression
1 prmz 16640 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
21zcnd 12692 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
3 prmz 16640 . . . . . . . 8 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
43zcnd 12692 . . . . . . 7 (𝑄 ∈ ℙ → 𝑄 ∈ ℂ)
5 addcom 11425 . . . . . . 7 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → (𝑃 + 𝑄) = (𝑄 + 𝑃))
62, 4, 5syl2anr 595 . . . . . 6 ((𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ) → (𝑃 + 𝑄) = (𝑄 + 𝑃))
76eqeq2d 2736 . . . . 5 ((𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ) → (𝑁 = (𝑃 + 𝑄) ↔ 𝑁 = (𝑄 + 𝑃)))
873anbi3d 1438 . . . 4 ((𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 𝑄)) ↔ (𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑄 + 𝑃))))
9 sbgoldbaltlem1 47178 . . . 4 ((𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑄 + 𝑃)) → 𝑃 ∈ Odd ))
108, 9sylbid 239 . . 3 ((𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 𝑄)) → 𝑃 ∈ Odd ))
1110ancoms 457 . 2 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 𝑄)) → 𝑃 ∈ Odd ))
12 sbgoldbaltlem1 47178 . 2 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd ))
1311, 12jcad 511 1 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 𝑄)) → (𝑃 ∈ Odd ∧ 𝑄 ∈ Odd )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098   class class class wbr 5144  (class class class)co 7413  cc 11131   + caddc 11136   < clt 11273  4c4 12294  cprime 16636   Even ceven 47023   Odd codd 47024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9460  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-n0 12498  df-z 12584  df-uz 12848  df-rp 13002  df-seq 13994  df-exp 14054  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-dvds 16226  df-prm 16637  df-even 47025  df-odd 47026
This theorem is referenced by:  sbgoldbalt  47180
  Copyright terms: Public domain W3C validator