Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbgoldbaltlem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for sbgoldbalt 44656: If an even number greater than 4 is the sum of two primes, the primes must be odd, i.e. not 2. (Contributed by AV, 22-Jul-2020.) |
Ref | Expression |
---|---|
sbgoldbaltlem2 | ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 ∈ Odd ∧ 𝑄 ∈ Odd ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmz 16061 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
2 | 1 | zcnd 12117 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℂ) |
3 | prmz 16061 | . . . . . . . 8 ⊢ (𝑄 ∈ ℙ → 𝑄 ∈ ℤ) | |
4 | 3 | zcnd 12117 | . . . . . . 7 ⊢ (𝑄 ∈ ℙ → 𝑄 ∈ ℂ) |
5 | addcom 10854 | . . . . . . 7 ⊢ ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → (𝑃 + 𝑄) = (𝑄 + 𝑃)) | |
6 | 2, 4, 5 | syl2anr 600 | . . . . . 6 ⊢ ((𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ) → (𝑃 + 𝑄) = (𝑄 + 𝑃)) |
7 | 6 | eqeq2d 2770 | . . . . 5 ⊢ ((𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ) → (𝑁 = (𝑃 + 𝑄) ↔ 𝑁 = (𝑄 + 𝑃))) |
8 | 7 | 3anbi3d 1440 | . . . 4 ⊢ ((𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 𝑄)) ↔ (𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑄 + 𝑃)))) |
9 | sbgoldbaltlem1 44654 | . . . 4 ⊢ ((𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑄 + 𝑃)) → 𝑃 ∈ Odd )) | |
10 | 8, 9 | sylbid 243 | . . 3 ⊢ ((𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑃 ∈ Odd )) |
11 | 10 | ancoms 463 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑃 ∈ Odd )) |
12 | sbgoldbaltlem1 44654 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd )) | |
13 | 11, 12 | jcad 517 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 ∈ Odd ∧ 𝑄 ∈ Odd ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 class class class wbr 5030 (class class class)co 7148 ℂcc 10563 + caddc 10568 < clt 10703 4c4 11721 ℙcprime 16057 Even ceven 44499 Odd codd 44500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-cnex 10621 ax-resscn 10622 ax-1cn 10623 ax-icn 10624 ax-addcl 10625 ax-addrcl 10626 ax-mulcl 10627 ax-mulrcl 10628 ax-mulcom 10629 ax-addass 10630 ax-mulass 10631 ax-distr 10632 ax-i2m1 10633 ax-1ne0 10634 ax-1rid 10635 ax-rnegex 10636 ax-rrecex 10637 ax-cnre 10638 ax-pre-lttri 10639 ax-pre-lttrn 10640 ax-pre-ltadd 10641 ax-pre-mulgt0 10642 ax-pre-sup 10643 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-tp 4525 df-op 4527 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5428 df-eprel 5433 df-po 5441 df-so 5442 df-fr 5481 df-we 5483 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-pred 6124 df-ord 6170 df-on 6171 df-lim 6172 df-suc 6173 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7106 df-ov 7151 df-oprab 7152 df-mpo 7153 df-om 7578 df-2nd 7692 df-wrecs 7955 df-recs 8016 df-rdg 8054 df-1o 8110 df-2o 8111 df-er 8297 df-en 8526 df-dom 8527 df-sdom 8528 df-fin 8529 df-sup 8929 df-pnf 10705 df-mnf 10706 df-xr 10707 df-ltxr 10708 df-le 10709 df-sub 10900 df-neg 10901 df-div 11326 df-nn 11665 df-2 11727 df-3 11728 df-4 11729 df-n0 11925 df-z 12011 df-uz 12273 df-rp 12421 df-seq 13409 df-exp 13470 df-cj 14496 df-re 14497 df-im 14498 df-sqrt 14632 df-abs 14633 df-dvds 15646 df-prm 16058 df-even 44501 df-odd 44502 |
This theorem is referenced by: sbgoldbalt 44656 |
Copyright terms: Public domain | W3C validator |