MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  serf Structured version   Visualization version   GIF version

Theorem serf 13995
Description: An infinite series of complex terms is a function from to . (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
serf.1 𝑍 = (ℤ𝑀)
serf.2 (𝜑𝑀 ∈ ℤ)
serf.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
serf (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍

Proof of Theorem serf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 serf.1 . 2 𝑍 = (ℤ𝑀)
2 serf.2 . 2 (𝜑𝑀 ∈ ℤ)
3 serf.3 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
4 addcl 11150 . . 3 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 + 𝑥) ∈ ℂ)
54adantl 481 . 2 ((𝜑 ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ)
61, 2, 3, 5seqf 13988 1 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wf 6507  cfv 6511  (class class class)co 7387  cc 11066   + caddc 11071  cz 12529  cuz 12793  seqcseq 13966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-seq 13967
This theorem is referenced by:  clim2ser  15621  clim2ser2  15622  isermulc2  15624  serf0  15647  fsumcvg  15678  isumadd  15733  iserabs  15781  cvgcmpce  15784  isumsplit  15806  mertenslem2  15851  mertens  15852  efcj  16058  mtest  26313  mtestbdd  26314  pserulm  26331  pserdvlem2  26338  abelthlem5  26345  abelthlem6  26346  abelthlem7  26348  abelthlem8  26349  atantayl  26847  gamcvg  26966  gamcvg2lem  26969  dchrisumlem3  27402  dchrmusum2  27405  dchrvmasumiflem1  27412  dchrisum0re  27424  dchrisum0lem1b  27426  dchrisum0lem2a  27428  iprodefisumlem  35727  iprodefisum  35728  sumnnodd  45628
  Copyright terms: Public domain W3C validator