Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > serf | Structured version Visualization version GIF version |
Description: An infinite series of complex terms is a function from ℕ to ℂ. (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
Ref | Expression |
---|---|
serf.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
serf.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
serf.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
Ref | Expression |
---|---|
serf | ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | serf.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | serf.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | serf.3 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
4 | addcl 11055 | . . 3 ⊢ ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 + 𝑥) ∈ ℂ) | |
5 | 4 | adantl 482 | . 2 ⊢ ((𝜑 ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ) |
6 | 1, 2, 3, 5 | seqf 13846 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ⟶wf 6476 ‘cfv 6480 (class class class)co 7338 ℂcc 10971 + caddc 10976 ℤcz 12421 ℤ≥cuz 12684 seqcseq 13823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-1st 7900 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-er 8570 df-en 8806 df-dom 8807 df-sdom 8808 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-n0 12336 df-z 12422 df-uz 12685 df-fz 13342 df-seq 13824 |
This theorem is referenced by: clim2ser 15466 clim2ser2 15467 isermulc2 15469 serf0 15492 fsumcvg 15524 isumadd 15579 iserabs 15627 cvgcmpce 15630 isumsplit 15652 mertenslem2 15697 mertens 15698 efcj 15901 mtest 25670 mtestbdd 25671 pserulm 25688 pserdvlem2 25694 abelthlem5 25701 abelthlem6 25702 abelthlem7 25704 abelthlem8 25705 atantayl 26194 gamcvg 26312 gamcvg2lem 26315 dchrisumlem3 26746 dchrmusum2 26749 dchrvmasumiflem1 26756 dchrisum0re 26768 dchrisum0lem1b 26770 dchrisum0lem2a 26772 iprodefisumlem 33998 iprodefisum 33999 sumnnodd 43559 |
Copyright terms: Public domain | W3C validator |