| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfsupdmmbl | Structured version Visualization version GIF version | ||
| Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their supremum function has the domain in the sigma-algebra. This is the fourth statement of Proposition 121H of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| Ref | Expression |
|---|---|
| smfsupdmmbl.1 | ⊢ Ⅎ𝑛𝜑 |
| smfsupdmmbl.2 | ⊢ Ⅎ𝑥𝜑 |
| smfsupdmmbl.3 | ⊢ Ⅎ𝑥𝐹 |
| smfsupdmmbl.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| smfsupdmmbl.5 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| smfsupdmmbl.6 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfsupdmmbl.7 | ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
| smfsupdmmbl.8 | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) |
| smfsupdmmbl.9 | ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} |
| smfsupdmmbl.10 | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
| Ref | Expression |
|---|---|
| smfsupdmmbl | ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfsupdmmbl.1 | . 2 ⊢ Ⅎ𝑛𝜑 | |
| 2 | smfsupdmmbl.2 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 3 | nfv 1915 | . 2 ⊢ Ⅎ𝑚𝜑 | |
| 4 | smfsupdmmbl.3 | . 2 ⊢ Ⅎ𝑥𝐹 | |
| 5 | smfsupdmmbl.4 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 6 | smfsupdmmbl.5 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 7 | smfsupdmmbl.6 | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 8 | smfsupdmmbl.7 | . 2 ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) | |
| 9 | smfsupdmmbl.8 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) | |
| 10 | smfsupdmmbl.9 | . 2 ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} | |
| 11 | eqid 2731 | . 2 ⊢ (𝑛 ∈ 𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚})) = (𝑛 ∈ 𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚})) | |
| 12 | smfsupdmmbl.10 | . 2 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | smfsupdmmbllem 46882 | 1 ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 ∀wral 3047 ∃wrex 3056 {crab 3395 ∩ ciin 4937 class class class wbr 5086 ↦ cmpt 5167 dom cdm 5611 ran crn 5612 ⟶wf 6472 ‘cfv 6476 supcsup 9319 ℝcr 11000 < clt 11141 ≤ cle 11142 ℕcn 12120 ℤcz 12463 ℤ≥cuz 12727 SAlgcsalg 46346 SMblFncsmblfn 46733 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cc 10321 ax-ac2 10349 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-omul 8385 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-oi 9391 df-card 9827 df-acn 9830 df-ac 10002 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-ioo 13244 df-ico 13246 df-rest 17321 df-salg 46347 df-smblfn 46734 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |