Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqsscirc2 Structured version   Visualization version   GIF version

Theorem sqsscirc2 33857
Description: The complex square of side 𝐷 is a subset of the complex disc of radius 𝐷. (Contributed by Thierry Arnoux, 25-Sep-2017.)
Assertion
Ref Expression
sqsscirc2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵𝐴))) < (𝐷 / 2) ∧ (abs‘(ℑ‘(𝐵𝐴))) < (𝐷 / 2)) → (abs‘(𝐵𝐴)) < 𝐷))

Proof of Theorem sqsscirc2
StepHypRef Expression
1 simplr 768 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → 𝐵 ∈ ℂ)
2 simpll 766 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → 𝐴 ∈ ℂ)
31, 2subcld 11649 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (𝐵𝐴) ∈ ℂ)
43recld 15245 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (ℜ‘(𝐵𝐴)) ∈ ℝ)
54recnd 11320 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (ℜ‘(𝐵𝐴)) ∈ ℂ)
65abscld 15487 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (abs‘(ℜ‘(𝐵𝐴))) ∈ ℝ)
75absge0d 15495 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → 0 ≤ (abs‘(ℜ‘(𝐵𝐴))))
86, 7jca 511 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(ℜ‘(𝐵𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℜ‘(𝐵𝐴)))))
93imcld 15246 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (ℑ‘(𝐵𝐴)) ∈ ℝ)
109recnd 11320 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (ℑ‘(𝐵𝐴)) ∈ ℂ)
1110abscld 15487 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (abs‘(ℑ‘(𝐵𝐴))) ∈ ℝ)
1210absge0d 15495 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → 0 ≤ (abs‘(ℑ‘(𝐵𝐴))))
1311, 12jca 511 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(ℑ‘(𝐵𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℑ‘(𝐵𝐴)))))
14 simpr 484 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℝ+)
15 sqsscirc1 33856 . . 3 (((((abs‘(ℜ‘(𝐵𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℜ‘(𝐵𝐴)))) ∧ ((abs‘(ℑ‘(𝐵𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℑ‘(𝐵𝐴))))) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵𝐴))) < (𝐷 / 2) ∧ (abs‘(ℑ‘(𝐵𝐴))) < (𝐷 / 2)) → (√‘(((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2))) < 𝐷))
168, 13, 14, 15syl21anc 837 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵𝐴))) < (𝐷 / 2) ∧ (abs‘(ℑ‘(𝐵𝐴))) < (𝐷 / 2)) → (√‘(((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2))) < 𝐷))
173absval2d 15496 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (abs‘(𝐵𝐴)) = (√‘(((ℜ‘(𝐵𝐴))↑2) + ((ℑ‘(𝐵𝐴))↑2))))
1817breq1d 5176 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(𝐵𝐴)) < 𝐷 ↔ (√‘(((ℜ‘(𝐵𝐴))↑2) + ((ℑ‘(𝐵𝐴))↑2))) < 𝐷))
19 absresq 15353 . . . . . . 7 ((ℜ‘(𝐵𝐴)) ∈ ℝ → ((abs‘(ℜ‘(𝐵𝐴)))↑2) = ((ℜ‘(𝐵𝐴))↑2))
204, 19syl 17 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(ℜ‘(𝐵𝐴)))↑2) = ((ℜ‘(𝐵𝐴))↑2))
21 absresq 15353 . . . . . . 7 ((ℑ‘(𝐵𝐴)) ∈ ℝ → ((abs‘(ℑ‘(𝐵𝐴)))↑2) = ((ℑ‘(𝐵𝐴))↑2))
229, 21syl 17 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(ℑ‘(𝐵𝐴)))↑2) = ((ℑ‘(𝐵𝐴))↑2))
2320, 22oveq12d 7468 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2)) = (((ℜ‘(𝐵𝐴))↑2) + ((ℑ‘(𝐵𝐴))↑2)))
2423fveq2d 6926 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (√‘(((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2))) = (√‘(((ℜ‘(𝐵𝐴))↑2) + ((ℑ‘(𝐵𝐴))↑2))))
2524breq1d 5176 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((√‘(((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2))) < 𝐷 ↔ (√‘(((ℜ‘(𝐵𝐴))↑2) + ((ℑ‘(𝐵𝐴))↑2))) < 𝐷))
2618, 25bitr4d 282 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(𝐵𝐴)) < 𝐷 ↔ (√‘(((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2))) < 𝐷))
2716, 26sylibrd 259 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵𝐴))) < (𝐷 / 2) ∧ (abs‘(ℑ‘(𝐵𝐴))) < (𝐷 / 2)) → (abs‘(𝐵𝐴)) < 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6575  (class class class)co 7450  cc 11184  cr 11185  0cc0 11186   + caddc 11189   < clt 11326  cle 11327  cmin 11522   / cdiv 11949  2c2 12350  +crp 13059  cexp 14114  cre 15148  cim 15149  csqrt 15284  abscabs 15285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263  ax-pre-sup 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-er 8765  df-en 9006  df-dom 9007  df-sdom 9008  df-sup 9513  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-div 11950  df-nn 12296  df-2 12358  df-3 12359  df-4 12360  df-n0 12556  df-z 12642  df-uz 12906  df-rp 13060  df-seq 14055  df-exp 14115  df-cj 15150  df-re 15151  df-im 15152  df-sqrt 15286  df-abs 15287
This theorem is referenced by:  tpr2rico  33860
  Copyright terms: Public domain W3C validator