Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqsscirc2 Structured version   Visualization version   GIF version

Theorem sqsscirc2 33914
Description: The complex square of side 𝐷 is a subset of the complex disc of radius 𝐷. (Contributed by Thierry Arnoux, 25-Sep-2017.)
Assertion
Ref Expression
sqsscirc2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵𝐴))) < (𝐷 / 2) ∧ (abs‘(ℑ‘(𝐵𝐴))) < (𝐷 / 2)) → (abs‘(𝐵𝐴)) < 𝐷))

Proof of Theorem sqsscirc2
StepHypRef Expression
1 simplr 768 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → 𝐵 ∈ ℂ)
2 simpll 766 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → 𝐴 ∈ ℂ)
31, 2subcld 11467 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (𝐵𝐴) ∈ ℂ)
43recld 15096 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (ℜ‘(𝐵𝐴)) ∈ ℝ)
54recnd 11135 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (ℜ‘(𝐵𝐴)) ∈ ℂ)
65abscld 15341 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (abs‘(ℜ‘(𝐵𝐴))) ∈ ℝ)
75absge0d 15349 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → 0 ≤ (abs‘(ℜ‘(𝐵𝐴))))
86, 7jca 511 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(ℜ‘(𝐵𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℜ‘(𝐵𝐴)))))
93imcld 15097 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (ℑ‘(𝐵𝐴)) ∈ ℝ)
109recnd 11135 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (ℑ‘(𝐵𝐴)) ∈ ℂ)
1110abscld 15341 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (abs‘(ℑ‘(𝐵𝐴))) ∈ ℝ)
1210absge0d 15349 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → 0 ≤ (abs‘(ℑ‘(𝐵𝐴))))
1311, 12jca 511 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(ℑ‘(𝐵𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℑ‘(𝐵𝐴)))))
14 simpr 484 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℝ+)
15 sqsscirc1 33913 . . 3 (((((abs‘(ℜ‘(𝐵𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℜ‘(𝐵𝐴)))) ∧ ((abs‘(ℑ‘(𝐵𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℑ‘(𝐵𝐴))))) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵𝐴))) < (𝐷 / 2) ∧ (abs‘(ℑ‘(𝐵𝐴))) < (𝐷 / 2)) → (√‘(((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2))) < 𝐷))
168, 13, 14, 15syl21anc 837 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵𝐴))) < (𝐷 / 2) ∧ (abs‘(ℑ‘(𝐵𝐴))) < (𝐷 / 2)) → (√‘(((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2))) < 𝐷))
173absval2d 15350 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (abs‘(𝐵𝐴)) = (√‘(((ℜ‘(𝐵𝐴))↑2) + ((ℑ‘(𝐵𝐴))↑2))))
1817breq1d 5096 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(𝐵𝐴)) < 𝐷 ↔ (√‘(((ℜ‘(𝐵𝐴))↑2) + ((ℑ‘(𝐵𝐴))↑2))) < 𝐷))
19 absresq 15204 . . . . . . 7 ((ℜ‘(𝐵𝐴)) ∈ ℝ → ((abs‘(ℜ‘(𝐵𝐴)))↑2) = ((ℜ‘(𝐵𝐴))↑2))
204, 19syl 17 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(ℜ‘(𝐵𝐴)))↑2) = ((ℜ‘(𝐵𝐴))↑2))
21 absresq 15204 . . . . . . 7 ((ℑ‘(𝐵𝐴)) ∈ ℝ → ((abs‘(ℑ‘(𝐵𝐴)))↑2) = ((ℑ‘(𝐵𝐴))↑2))
229, 21syl 17 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(ℑ‘(𝐵𝐴)))↑2) = ((ℑ‘(𝐵𝐴))↑2))
2320, 22oveq12d 7359 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2)) = (((ℜ‘(𝐵𝐴))↑2) + ((ℑ‘(𝐵𝐴))↑2)))
2423fveq2d 6821 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (√‘(((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2))) = (√‘(((ℜ‘(𝐵𝐴))↑2) + ((ℑ‘(𝐵𝐴))↑2))))
2524breq1d 5096 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((√‘(((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2))) < 𝐷 ↔ (√‘(((ℜ‘(𝐵𝐴))↑2) + ((ℑ‘(𝐵𝐴))↑2))) < 𝐷))
2618, 25bitr4d 282 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(𝐵𝐴)) < 𝐷 ↔ (√‘(((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2))) < 𝐷))
2716, 26sylibrd 259 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵𝐴))) < (𝐷 / 2) ∧ (abs‘(ℑ‘(𝐵𝐴))) < (𝐷 / 2)) → (abs‘(𝐵𝐴)) < 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111   class class class wbr 5086  cfv 6476  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001   + caddc 11004   < clt 11141  cle 11142  cmin 11339   / cdiv 11769  2c2 12175  +crp 12885  cexp 13963  cre 14999  cim 15000  csqrt 15135  abscabs 15136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138
This theorem is referenced by:  tpr2rico  33917
  Copyright terms: Public domain W3C validator