Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqsscirc2 Structured version   Visualization version   GIF version

Theorem sqsscirc2 31160
Description: The complex square of side 𝐷 is a subset of the complex disc of radius 𝐷. (Contributed by Thierry Arnoux, 25-Sep-2017.)
Assertion
Ref Expression
sqsscirc2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵𝐴))) < (𝐷 / 2) ∧ (abs‘(ℑ‘(𝐵𝐴))) < (𝐷 / 2)) → (abs‘(𝐵𝐴)) < 𝐷))

Proof of Theorem sqsscirc2
StepHypRef Expression
1 simplr 767 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → 𝐵 ∈ ℂ)
2 simpll 765 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → 𝐴 ∈ ℂ)
31, 2subcld 10975 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (𝐵𝐴) ∈ ℂ)
43recld 14533 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (ℜ‘(𝐵𝐴)) ∈ ℝ)
54recnd 10647 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (ℜ‘(𝐵𝐴)) ∈ ℂ)
65abscld 14776 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (abs‘(ℜ‘(𝐵𝐴))) ∈ ℝ)
75absge0d 14784 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → 0 ≤ (abs‘(ℜ‘(𝐵𝐴))))
86, 7jca 514 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(ℜ‘(𝐵𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℜ‘(𝐵𝐴)))))
93imcld 14534 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (ℑ‘(𝐵𝐴)) ∈ ℝ)
109recnd 10647 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (ℑ‘(𝐵𝐴)) ∈ ℂ)
1110abscld 14776 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (abs‘(ℑ‘(𝐵𝐴))) ∈ ℝ)
1210absge0d 14784 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → 0 ≤ (abs‘(ℑ‘(𝐵𝐴))))
1311, 12jca 514 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(ℑ‘(𝐵𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℑ‘(𝐵𝐴)))))
14 simpr 487 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℝ+)
15 sqsscirc1 31159 . . 3 (((((abs‘(ℜ‘(𝐵𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℜ‘(𝐵𝐴)))) ∧ ((abs‘(ℑ‘(𝐵𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℑ‘(𝐵𝐴))))) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵𝐴))) < (𝐷 / 2) ∧ (abs‘(ℑ‘(𝐵𝐴))) < (𝐷 / 2)) → (√‘(((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2))) < 𝐷))
168, 13, 14, 15syl21anc 835 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵𝐴))) < (𝐷 / 2) ∧ (abs‘(ℑ‘(𝐵𝐴))) < (𝐷 / 2)) → (√‘(((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2))) < 𝐷))
173absval2d 14785 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (abs‘(𝐵𝐴)) = (√‘(((ℜ‘(𝐵𝐴))↑2) + ((ℑ‘(𝐵𝐴))↑2))))
1817breq1d 5052 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(𝐵𝐴)) < 𝐷 ↔ (√‘(((ℜ‘(𝐵𝐴))↑2) + ((ℑ‘(𝐵𝐴))↑2))) < 𝐷))
19 absresq 14642 . . . . . . 7 ((ℜ‘(𝐵𝐴)) ∈ ℝ → ((abs‘(ℜ‘(𝐵𝐴)))↑2) = ((ℜ‘(𝐵𝐴))↑2))
204, 19syl 17 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(ℜ‘(𝐵𝐴)))↑2) = ((ℜ‘(𝐵𝐴))↑2))
21 absresq 14642 . . . . . . 7 ((ℑ‘(𝐵𝐴)) ∈ ℝ → ((abs‘(ℑ‘(𝐵𝐴)))↑2) = ((ℑ‘(𝐵𝐴))↑2))
229, 21syl 17 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(ℑ‘(𝐵𝐴)))↑2) = ((ℑ‘(𝐵𝐴))↑2))
2320, 22oveq12d 7151 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2)) = (((ℜ‘(𝐵𝐴))↑2) + ((ℑ‘(𝐵𝐴))↑2)))
2423fveq2d 6650 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (√‘(((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2))) = (√‘(((ℜ‘(𝐵𝐴))↑2) + ((ℑ‘(𝐵𝐴))↑2))))
2524breq1d 5052 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((√‘(((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2))) < 𝐷 ↔ (√‘(((ℜ‘(𝐵𝐴))↑2) + ((ℑ‘(𝐵𝐴))↑2))) < 𝐷))
2618, 25bitr4d 284 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(𝐵𝐴)) < 𝐷 ↔ (√‘(((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2))) < 𝐷))
2716, 26sylibrd 261 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵𝐴))) < (𝐷 / 2) ∧ (abs‘(ℑ‘(𝐵𝐴))) < (𝐷 / 2)) → (abs‘(𝐵𝐴)) < 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114   class class class wbr 5042  cfv 6331  (class class class)co 7133  cc 10513  cr 10514  0cc0 10515   + caddc 10518   < clt 10653  cle 10654  cmin 10848   / cdiv 11275  2c2 11671  +crp 12368  cexp 13414  cre 14436  cim 14437  csqrt 14572  abscabs 14573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-sup 8884  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-3 11680  df-4 11681  df-n0 11877  df-z 11961  df-uz 12223  df-rp 12369  df-seq 13354  df-exp 13415  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575
This theorem is referenced by:  tpr2rico  31163
  Copyright terms: Public domain W3C validator