Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqsscirc2 Structured version   Visualization version   GIF version

Theorem sqsscirc2 33567
Description: The complex square of side 𝐷 is a subset of the complex disc of radius 𝐷. (Contributed by Thierry Arnoux, 25-Sep-2017.)
Assertion
Ref Expression
sqsscirc2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵𝐴))) < (𝐷 / 2) ∧ (abs‘(ℑ‘(𝐵𝐴))) < (𝐷 / 2)) → (abs‘(𝐵𝐴)) < 𝐷))

Proof of Theorem sqsscirc2
StepHypRef Expression
1 simplr 767 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → 𝐵 ∈ ℂ)
2 simpll 765 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → 𝐴 ∈ ℂ)
31, 2subcld 11601 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (𝐵𝐴) ∈ ℂ)
43recld 15173 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (ℜ‘(𝐵𝐴)) ∈ ℝ)
54recnd 11272 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (ℜ‘(𝐵𝐴)) ∈ ℂ)
65abscld 15415 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (abs‘(ℜ‘(𝐵𝐴))) ∈ ℝ)
75absge0d 15423 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → 0 ≤ (abs‘(ℜ‘(𝐵𝐴))))
86, 7jca 510 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(ℜ‘(𝐵𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℜ‘(𝐵𝐴)))))
93imcld 15174 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (ℑ‘(𝐵𝐴)) ∈ ℝ)
109recnd 11272 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (ℑ‘(𝐵𝐴)) ∈ ℂ)
1110abscld 15415 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (abs‘(ℑ‘(𝐵𝐴))) ∈ ℝ)
1210absge0d 15423 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → 0 ≤ (abs‘(ℑ‘(𝐵𝐴))))
1311, 12jca 510 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(ℑ‘(𝐵𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℑ‘(𝐵𝐴)))))
14 simpr 483 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℝ+)
15 sqsscirc1 33566 . . 3 (((((abs‘(ℜ‘(𝐵𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℜ‘(𝐵𝐴)))) ∧ ((abs‘(ℑ‘(𝐵𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℑ‘(𝐵𝐴))))) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵𝐴))) < (𝐷 / 2) ∧ (abs‘(ℑ‘(𝐵𝐴))) < (𝐷 / 2)) → (√‘(((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2))) < 𝐷))
168, 13, 14, 15syl21anc 836 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵𝐴))) < (𝐷 / 2) ∧ (abs‘(ℑ‘(𝐵𝐴))) < (𝐷 / 2)) → (√‘(((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2))) < 𝐷))
173absval2d 15424 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (abs‘(𝐵𝐴)) = (√‘(((ℜ‘(𝐵𝐴))↑2) + ((ℑ‘(𝐵𝐴))↑2))))
1817breq1d 5153 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(𝐵𝐴)) < 𝐷 ↔ (√‘(((ℜ‘(𝐵𝐴))↑2) + ((ℑ‘(𝐵𝐴))↑2))) < 𝐷))
19 absresq 15281 . . . . . . 7 ((ℜ‘(𝐵𝐴)) ∈ ℝ → ((abs‘(ℜ‘(𝐵𝐴)))↑2) = ((ℜ‘(𝐵𝐴))↑2))
204, 19syl 17 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(ℜ‘(𝐵𝐴)))↑2) = ((ℜ‘(𝐵𝐴))↑2))
21 absresq 15281 . . . . . . 7 ((ℑ‘(𝐵𝐴)) ∈ ℝ → ((abs‘(ℑ‘(𝐵𝐴)))↑2) = ((ℑ‘(𝐵𝐴))↑2))
229, 21syl 17 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(ℑ‘(𝐵𝐴)))↑2) = ((ℑ‘(𝐵𝐴))↑2))
2320, 22oveq12d 7434 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2)) = (((ℜ‘(𝐵𝐴))↑2) + ((ℑ‘(𝐵𝐴))↑2)))
2423fveq2d 6896 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (√‘(((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2))) = (√‘(((ℜ‘(𝐵𝐴))↑2) + ((ℑ‘(𝐵𝐴))↑2))))
2524breq1d 5153 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((√‘(((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2))) < 𝐷 ↔ (√‘(((ℜ‘(𝐵𝐴))↑2) + ((ℑ‘(𝐵𝐴))↑2))) < 𝐷))
2618, 25bitr4d 281 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(𝐵𝐴)) < 𝐷 ↔ (√‘(((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2))) < 𝐷))
2716, 26sylibrd 258 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵𝐴))) < (𝐷 / 2) ∧ (abs‘(ℑ‘(𝐵𝐴))) < (𝐷 / 2)) → (abs‘(𝐵𝐴)) < 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098   class class class wbr 5143  cfv 6543  (class class class)co 7416  cc 11136  cr 11137  0cc0 11138   + caddc 11141   < clt 11278  cle 11279  cmin 11474   / cdiv 11901  2c2 12297  +crp 13006  cexp 14058  cre 15076  cim 15077  csqrt 15212  abscabs 15213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-sup 9465  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-n0 12503  df-z 12589  df-uz 12853  df-rp 13007  df-seq 13999  df-exp 14059  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215
This theorem is referenced by:  tpr2rico  33570
  Copyright terms: Public domain W3C validator