Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > absge0d | Structured version Visualization version GIF version |
Description: Absolute value is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
abscld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
absge0d | ⊢ (𝜑 → 0 ≤ (abs‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | absge0 14700 | . 2 ⊢ (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 0 ≤ (abs‘𝐴)) |
Copyright terms: Public domain | W3C validator |